GDOES depth profile analysis for the investigation of the thermal stability and the degradation mechanisms of Ta based diffusion barriers for Cu metallization systems

René Hübner¹, Michael Hecker¹, Volker Hoffmann¹, Hans-Jürgen Engelmann², Henning Heuer³, and Klaus Wetzig¹

¹ Leibniz Institute for Solid State and Materials Research Dresden ² AMD Saxony LLC & Co. KG Dresden ³ Dresden University of Technology

Leibniz Institute for Solid State and Materials Research Dresden

Outline

- 1. Motivation of the investigations
- 2. Sample preparation and investigation methods
- 3. Thermal behavior of various metallization systems during annealing:

4. Summary

IFW

Leibniz Institute for Solid State and Materials Research Dresden

Advantages and disadvantages of copper as interconnect material

Compared to aluminum:

- © Lower electrical resistivity
- [©] Higher thermal conductivity
- [©] Higher electromigration resistance
- [©] Better stress migration behavior

Cu/SiO₂/Si - TEM

⊖ High diffusivity of Cu in Si and SiO₂
⊖ Cu₃Si formation at *T* ≈ 200°C

⇒ Need for diffusion barriers between Cu and interlayer dielectric

Leibniz Institute for Solid State and Materials Research Dresden

Barrier layer requirements

- Defect-free microstructure of B and its thermal stability
- Low diffusion coefficients of M in B and of S in B
- High chemical stability of the interfaces between M and B as well as between S and B
- High electrical conductivity of B
- High thermal conductivity of B
- Good adhesion of B on S as well as of M on B
- Good mechanical properties (low residual stresses)
- Conformal deposition of B

Tantalum diffusion barriers:

iii High melting point (T_{m,Ta} = 3020 °C)
iii High chemical stability of Ta/Si and Ta/SiO₂ interfaces
iii Very low solubility of Cu in Ta and vice versa
iii No reaction between Cu and Ta
iii High electrical conductivity (especially for α-Ta phase)
iiii Polycrystalline microstructure ⇒ Cu diffusion

\Rightarrow Need for more stable diffusion barriers

Leibniz Institute for Solid State and Materials Research Dresden

Sample preparation

PVD copper chamber $p_0 < 2*10^{-5}$ Pa, d.c. magnetron

sputtering, P = 1000 W

<image>

Dealer

ICP soft etch chamber Ar plasma, P = 200 W

Cluster Tool

Load lock

PVD barrier chamber $p_0 < 2*10^{-5}$ Pa, Ta / Ta₅Si₃ target, r.f. magnetron sputtering, P = 1000 W, different N₂/Ar flow ratios

After sputter deposition annealing under vacuum conditions ($p \approx 10^{-4}$ Pa) at various temperatures and annealing times

Leibniz Institute for Solid State and Materials Research Dresden

Investigation methods

X-Ray Diffraction (XRD) Phase formation behavior

Leibniz Institute for Solid State and Materials Research Dresden

René Hübner

GDOES

Rowland-

Kreis

Konkavgitter

Leibniz Institute for Solid State and Materials Research Dresden

Cu/TaN/SiO₂/Si

IFW

Leibniz Institute for Solid State and Materials Research Dresden

Cu/Ta/TaN/Ta/SiO₂/Si

Leibniz Institute for Solid State and Materials Research Dresden

Cu/Ta₇₃Si₂₇/SiO₂/Si

IFW

Leibniz Institute for Solid State and Materials Research Dresden

Summary

▷ GDOES depth profile analysis – simultaneous and quick acquisition of element distributions with sufficiently high depth resolution \Rightarrow quick and comparative characterization of the setup of Cu metallization systems in the as-deposited state and after annealing

> In particular analysis of various diffusion processes: N redistribution within graded Ta-TaN barriers, Ta diffusion out of the barrier to the sample surface, Cu diffusion through the barrier into the substrate ⇒ in conjunction with other methods (XRD, TEM) determination of the thermal stability and the degradation mechanisms of Ta-based diffusion barriers

➤ Interpretation of the element depth profiles – separation of methodically caused effects from sample properties

