Imperial College London

Optical emission spectra of metallic nitrides in the Grimmtype glow discharge

Petr Šmíd^a, Zdeněk Weiss^b and Edward B. M. Steers^c

- ^a Imperial College London, UK
- ^b LECO Instrumente Plzeň, Czech Republic
- ^c London Metropolitan University, UK

Copyright: Dieser Vortrag darf nur nach Absprache den Autoren zitiert werden

Goals of this paper:

- to compare optical emission spectra of metallic nitrides with corresponding metals and to test validity of matrix independent emission yield concept
- to compare optical emission spectra of the discharge when:
 - nitrogen enters the discharge from a metallic nitride
 - nitrogen is introduced into the discharge as a trace molecular gas

Experimental – metallic nitrides

- commercial instrument LECO GDS500A with a Grimm-type glow discharge sources, 4 mm diameter anode tube
- spectrometer equipped with CCD detector arrays, wavelength range from 165 to 460 nm and spectral resolution of 70 pm (310–460 nm), resp. 85 pm (165–310 nm)
- spectra of metallic nitrides nitrided steel, CrN, TiN and ZrN (stoichiometry checked with RBS) – compared with spectra of corresponding metals – steel, Cr, Ti and Zr
- constant dc voltage (700 V) and constant current (20 mA)

Experimental – metallic nitrides

Qualitative depth profile of the nitrided steel sample

Experimental – Ar/N₂ discharges

- Grimm-type glow discharge sources, 8 mm diameter anode tube
- Fourier Transform Spectrometer with PMT detection, wide wavelength range (135–900 nm) and high resolution (e.g. 0.85 pm at 300 nm)
- Fe and Ti samples sputtered in the glow discharge running in pure Ar and Ar with small amounts of N₂ (0–2 % vol./vol.)
- constant dc voltage (700 V) and current (40 mA)

Results – metallic nitrides

Spectrum of a steel sample (DIN X38-CrMoV51)

Spectrum of a *nitrided* steel sample (DIN X38-CrMoV51)

Results – metallic nitrides

Results – metallic nitrides vs. Ar/N₂ discharges

Page 8

Results – argon lines

Intensity of an emission line of a wavelength λ :

$$I_{\lambda} \propto n_2 A_{21} \frac{h\lambda}{c}$$

Plasma gas emission line:

Results – argon lines

$$\frac{I_{Ar,\lambda}^{MN}}{I_{Ar,\lambda}^{M}} \propto \frac{p_{MN}}{p_{M}} \cdot \frac{f_{exc}^{MN}(\lambda, p_{MN})}{f_{exc}^{M}(\lambda, p_{M})}$$

Comparison of average argon intensity ratios with gas pressure ratios:

Metallic nitrides:

Samples	Intensity rat	Gas pressure		
	Mean	STD	Number	ratio рмм/рм
Nitrided steel/steel	0.96	0.03	60	1.04
CrN/Cr	0.80	0.05	60	1.05
TiN/Ti	0.78	0.05	60	1.19
ZrN/Zr	0.80	0.07	60	1.04

Ar+N₂ mixtures:

	% N ₂	Intensity ratios of argon emission lines						Pressure		
	vol./vol.	Mean		STD	Numb	ber	ratio			
Fe	0.05		0.97		0.05	60		1.00		
	0.18		0.92		0.18	60			1.02	
Ti	0.07		0.98		0.06	60			1.06	
	0.11		0.92		0.12	60			1.15	

Page 10

© Imperial College London

Results – sample metal lines

Intensity of an emission line of a wavelength λ :

$$I_{\lambda} \propto n_2 A_{21} \frac{h\lambda}{c}$$

Sample emission line:

$$I_{E,\lambda} = R_{E,\lambda} c_{E,M} q_M$$

$$\downarrow$$
Intensity ratio:
$$\frac{I_{E,\lambda}^{MN}}{I_{E,\lambda}^{M}} = \frac{R_{E,\lambda}^{MN}}{R_{E,\lambda}^{M}} \cdot \frac{c_{E,MN} q_{MN}}{c_{E,M} q_M}$$

Results – sample metal lines (metallic nitrides)

$$\frac{I_{E,\lambda}^{MN}}{I_{E,\lambda}^{M}} = \frac{R_{E,\lambda}^{MN}}{R_{E,\lambda}^{M}} \cdot \frac{c_{E,MN}q_{MN}}{c_{E,M}q_{M}}$$

For Matrix Independent Emission Yield:

$$R_{E,\lambda}^{MN} = R_{E,\lambda}^{M} \implies \frac{I_{E,\lambda}^{MN}}{I_{E,\lambda}^{M}} = \frac{c_{E,MN}q_{MN}}{c_{E,M}q_{M}}$$

Average intensity ratio vs. flux ratio

Intensity ratio	Min	Max	STD	No. lines	Flux ratio	STD
0.84	0.71	0.95	0.05	134		
0.42	0.35	0.55	0.05	46	0.39	0.05
0.47	0.34	0.66	0.05	173	0.49	0.11
0.41	0.31	0.61	0.05	239	0.43	0.09
	Intensity ratio 0.84 0.42 0.47 0.41	Intensity ratio Min 0.84 0.71 0.42 0.35 0.47 0.34 0.41 0.31	Intensity ratio Min Max 0.84 0.71 0.95 0.42 0.35 0.55 0.47 0.34 0.66 0.41 0.31 0.61	Intensity ratio Min Max STD 0.84 0.71 0.95 0.05 0.42 0.35 0.55 0.05 0.47 0.34 0.66 0.05 0.41 0.31 0.61 0.05	Intensity ratio Min Max STD No. lines 0.84 0.71 0.95 0.05 134 0.42 0.35 0.55 0.05 46 0.47 0.34 0.66 0.05 173 0.41 0.31 0.61 0.05 239	Intensity ratio Min Max STD No. lines Flux ratio 0.84 0.71 0.95 0.05 134 0.42 0.35 0.55 0.05 46 0.39 0.47 0.34 0.66 0.05 173 0.49 0.41 0.31 0.61 0.05 239 0.43

Results – sample metal lines (metallic nitrides)

For Matrix Independent Emission Yield:

$$R_{E,\lambda}^{MN} = R_{E,\lambda}^{M} \implies \frac{I_{E,\lambda}^{MN}}{I_{E,\lambda}^{M}} = \frac{c_{E,MN}q_{MN}}{c_{E,M}q_{M}} \neq f(\lambda)$$

Results – sample lines (metallic nitrides vs. Ar/N₂ discharges)

© Imperial College London

Results — nitrogen lines (metallic nitrides vs. Ar/N₂ discharges)

Emission yields for nitrogen atomic lines:

	R _{N I 174.273}	STD	R _{N I 174.525}	STD
Nitrided steel				
CrN	3.9	0.4	1.8	0.2
TiN	4.1	0.9	1.7	0.4
ZrN	3.5	0.5	1.6	0.2

Intensity of N I 174.525 nm vs. N₂ concentration in Ar+N₂:

Page 16

Results – nitrogen molecular bands (Ar/N₂ discharges)

Intensity of N₂ 337.13 nm molecular band vs. N₂ concentration in Ar:

Acknowledgement

Petr Šmíd would like to thank to

- the Royal Society for a one year RS/NATO postdoctoral fellowship at Imperial College London
- the Association of British Spectroscopists Trust for funding his attendance at this meeting