

New developments in RF–GD-OES extend the range of applications

Christophe Deraed and Patrick Chapon Jobin Yvon

HORIBAGROUP

Explore the future

EMISSION • F

• 1JN1J6

• GKA

FORENSICS

UEM •

B A M A N

OPTICAL SPECTRO

COPY • THI

Glow Discharge Source

External mounting of the sample Primary vacuum (double pumping) Fast sputtering rate $(1-5 \,\mu m/mn)$ Measure all elements (including H, O, N, Cl, C and F) Conductive and non conductive layer Ease of use

RAMAN

HORIBAGROUP

Explore the future

EMISSION

Range of applications

Cutting tool. 2mm Anode, deep crater

Surface layers of a hard disk (X scale in nm)

G B A T I N G S

HORIBAGROUP

OPTICAL

RAMAN

S P

Explore the future

•

EMISSION

Practical benefits of recent advances in theory and practice

- Understanding the GD RF plasma.
- >> Running efficiently large samples.
- Development of a pulse RF source.
- >>Applications to fragile materials.
- Emphasis on accessories
- >> Application to small and/or odd samples (tubes etc)
- New ideas and approches in Quantification.
- >> Improvements of CDP for ultra thin layers

HORIBAG

Explore the future

EMISSION •

iGENGE •

RENSICS • GI

GS & DEM

•

OPTICAL

1) Understanding the GD RF plasma

 Extensive work done in cooperation with other researchers

 Recent paper published (JAAS 2003 – special edition on GD)

HORIBAGROUP

EMISSION

Explore the future

UNITOPIUN

FORFNSICS

GRATINGS & DEM

RAMAN

•

OPTICAL

SPECTR

Achievements and practical benefits of the work

- The RF circuitry is fully described
- Changes in impedance are understood and can be either monitored and/or minimized
- This approach is validated by the characterisation of the RF plasma

Benefits are the improvement of the lamp design and of the quantification.

HORIBAG

Explore the future

MISSION

GD-Profiler design

•Large sample compartment •Centrelite for precise positionning Samples over 50cm in diameter •Large wafers

HORIBAGROUP

Explore the future

EMISSION FLUORESCENCI •

FORENSICS

GRATINGS & DEM •

BAMAN •

OPTICAL SPECTROSCOPY

THIN FILM

Large samples : handling and analysis

 $R_{\rm O}$

 $V_{\rm RF}$

໌~

Modelisation of the lamp

Software screen for the analysis of wafers

FORENSICS

GeneratorMatching BoxLoadJY Horiba patent for
large wafers analysis

 L_2

 C_1

11

No signal variation due to sample positionning

HORIBAGROUP

Explore the future

EMISSION • FL

GRATINGS

& DEM •

R A M A N

OPTICAL S

Y • THIN

2 Coaxial Cable 3

C_{stray}

 $Z_{\rm L}$

21

 $Z_{\rm P}$

Source

 C_2

 R_2

🖲 Doc	ument1 -	Microso	ft Word										_ & ×
			-	🛃 Normal		nes New Roman	• 12	• G Z	<u>s</u> = = =	= 🖬 💷	• 🗄 🖅 💷	i 🗐 🕶 🍝	² • <u>A</u> • .
Eichier	Edition	<u>A</u> ffichage	Insertion Fo	rma <u>t O</u> utils	Ta <u>b</u> leau Fei	<u>n</u> être <u>?</u>					Таре	ez une question	- ×
🗋 🖆	- 🖃 🔒 🖲	6 🖨 🛛	👌 💱 X 🖻	i 🛍 💅 🗠	👻 🖂 👻 🍓	, 🕑 🗔 📰	I 📣 🖾 1	150% -	2.				
Final av	ec balises	▼ Affig	iher 🕶 🔿 Đ	🕗 • 🕸 • 🕴	🔄 🖌 🏠 🖬	2 -							
	<u> </u>	1.1.1	2 • • • 3 •	. 4	5 • • • 6	7	· 8 · I ·	9 · · · 10	• • • 11 • • •	12 13	3 • • • 14 • •	15	<u> </u>
~													
1													
-	I												
-													
-					Table 1	rf-GDOF	S results	for B in	BSG				
-					Table 1 rf-GDOES results for B in BSG Ratio Center/								
-	Slat	тар	CDOES								Ratio		
- 2	5101	IND	Center			Edge			Average		Edge		
-			Mean	SD	RSD	Mean	SD	RSD	Mean	SD	Lage	-	
	1	85	12 67	0.15	1 17	11 85	0.24	2 05	12.26	0.20	1 07		
-	2	85	12.07	0.09	0.75	11.00	0.11	0.96	12.20	0.20	1.07		
4	3	135	18 27	0.31	1 67	17 40	0.45	2 61	17.83	0.39	1.05		
-	4	135	17.85	0.26	1.46	17.28	0.04	0.26	17.57	0.19	1.03		
5	5	100	15.40	0.07	0.43	15.24	0.30	1.98	15.32	0.22	1.01		
-	6	100	15.27	0.22	1.44	14.27	0.22	1.57	14.77	0.22	1.07		
ب				mean=	1.15			1.57			1.04		-
-												Ê.	*
•													• *
	· · · · · · · · · · · · · · · · · · ·							~					•
Page 1	Sec 1	1	l/1 A 9.2 cn	n Li15 Col	1 ENR I	REV EXT RFP	Anglais (Aus					V VVUIII	11011
												/ HORI	BA

Explore the future

EMISSION •

FLUORESCENCE

• GRATINGS & DEM

FORENSICS

•

5 & DEM •

RAMAN • OPTICAL SPECTROSCOPY

HORIBAGROUP

•

THIN FILM

2) Development of a pulse RF source

- RF can analyze conductors and non conductors
- Non conductors have a poor thermal dissipation
- Risks of overheating and cracks of some materials when RF is continuously applied
- Pulsed RF extends the range of applications to thermal sensitive materials

FORENSICS

HORIBAGR

Explore the future

EMISSION

Effect of the thermal constraint on thin glasses

ENISSION • FLUORESCENCE • FORENSICS • GRATINGS & DEM • RAMAN • OPTICAL SPECTROSCOPY • THIN FILI

JY new RF source

- Can operate in normal mode and in pulsed mode.
- All modes are computer controlled
- Simple method parameters to select

Benefits : extended ranges of applications

HORIBAGB

Explore the future

EMISSION •____

• 10N1061NUU

FORENSICS • G

65 X ULM

RAMAN •

OPTICAL SPECTROSCOP

Operation in pulse mode : software

s Quantum AP										
<u>D</u> atei <u>E</u> rgebnisse <u>K</u> ontrolle <u>A</u> nalyse Ka <u>l</u> ibratio	n <u>T</u> ools <u>?</u>	100.00								
Ouantum Gegenw Image Image	ártige Methode (-index) ses - 0) Status	Datum/Zeit Benutzername	2004/09/10 12:00:13 3	Beenden					
Method: Glasses - 0 Date/Time: 2004/05/12.16:44 Mailgemein Elemente Analysein Standards Antergungsmadus Bulk Aufmahme Anregungsparameter Schnelle Preintegration										
Pressure 620 Pa Power 30 W Pulse Yes Frequency 5000 Hz	Generator Para	neter								
Duty cycle 0.125 Efficient power 3.75 W Module 7.4 V Phase 5 V	Druck	62	OPa I P olwy Free	uls quenz	5000 - Hz					
	Modul (geladen)	7.4	o Arbo	eitszyklus	0.125					
	Phase	5.0	0 Res	sultierende Leistu	ng 3.750 W					
			ок	X Abbrechen						
🛃 Start 🔰 🎼 🎕 ACTI - [E02 💽 Posteingang	🚯 Quantum XP 🛛 🖾) G:\German Us	🏠 Arbeitsplatz	Microsoft Pow	DE 📢 🙆 👬 🐉 12:00					

FORENSICS

•

•

GRATINGS & DEM

BAMAN

•

•

Max power 300W in pulse mode

Pulse frequency and duty cycle are computer controlled

HORIBAGROUP

•

THIN FILM

OPTICAL SPECTROSCOPY

Explore the future

•

FLUORESCENCE

EMISSION

Pulsing: Coated glass

This example shows the result done on a spectacle glass lens, slightly curved with a Ti2O3 based, antireflection coating. The sample immediately melts when using non pulsed GD.

HORIBAGROUP

Explore the future

EMISSION •

FLUORESCENCE •

FORENSICS •

GRATINGS & DEM •

M 🔸 BAMAN

OPTICAL SPECTROSCOPY

Sample : rubber on stainless steel. Normal RF

(Same with X log scale)

Intensities (a.u.) versus time

Fe and Cr signals are recorded from the beginning indicating that the outer layers are melted

Explore the future

EMISSION

FORENSICS

RAMAN

HORIBAGB

Same Sample : rubber on stainless steel. Pulsed RF

Correct analysis of the sample

HORIBAGROUP

Explore the future

EMISSION • I

FLUORESCENCE • FORENSICS

GRATINGS &

E DEM •

• BAMAN

OPTICAL SPECT

Y • THINFI

Low melting point layers

HORIBAGROUP

Explore the future

EMISSION • FLUORESCENCE

IGE • FOREI

FORENSICS •

GRATINGS & DEM •

A 🔸 🛛 🗛 🗛 🗛 🗛 🖌

OPTICAL SPECTROSCOPY

•

PY • THINFILM

Thin coatings on fragile glasses with pulsed RF

SnO2/Ni-Cr/SnO2 on glass

Original sample

HORIBAGROUP

THIN FILM

OPTICAL SPECTROSCOPY

Explore the future

EMISSION • FLUORESCENCI

FORENSICS

GRATINGS & DEM

Utm •

BAMAN •

Thin coatings on fragile glasses

FORENSICS

•

•

GRATINGS & OEM

BAMAN

•

•

Heat treated sample

Migration of Na

Migration of Cr

OPTICAL SPECTROSCOPY

Diffusion of Sn

HORIBAGROUP

Explore the future

۰

FLUORESCENCI

EMISSION

3) Small samples

FLUORESCENCE

•

Explore the future

•

EMISSION

HORIBAGROUP

•

THIN FILM

FORENSICS • GRATINGS & OEM

•

RAMAN

OPTICAL SPECTROSCOPY •

Odd shape samples

2 mm spots Special sample holder

Explore the future

EMISSION • FLUORESCENCI

FORENSICS

•

•

GRATINGS &

& DEM •

R A M A N

•

OPTICAL SPECTROSCOPY

GOPY • THINFILM

HORIBAGROUP

CDP : the quantification chain

4) Layer mode : entering known information into the model

Explore the future

EMISSION •

FLUORESCENCE

•

FORENSICS •

GRATINGS & DEM •

B A M A N

•

OPTICAL SPECTROSCOPY

THIN FIL

HORIBAGROUP

Layer mode 3D display of the sample

Explore the future

EMISSION •

FLUORESCENCE •

FORENSICS • GRATINGS & DEM

•

RAMAN •

OPTICAL SPECTROSCOPY

THIN FILM •

HORIBAGROUP

Example : Ti-Nb Layers on Al

Determined by Rutherford Backscattering

Explore the future

EMISSION •

NGE • FORENSICS

• GKAT

IEN •

R A M A N

OPTICAL S

CIROSCOPY •

HORIBAGRO

Qualitative Depth Profile

HORIBAGROUP

•

THIN FILM

Explore the future

EMISSION •

FLUORESCENCE

•

FORENSICS •

GRATINGS & DEM •

IEM • BAMAN

OPTICAL SPECTROSCOPY

•

Wave Corrected Depth Profile

HORIBAGROUP

Explore the future

EMISSION •

FLUORESCENCE •

FORENSICS • GR

GRATINGS & OEM •

• BAMAN

OPTICAL SPECTROSCOPY

•

PY • THIN FILM

Wave Corrected Depth Profile

HORIBAGROUP

Explore the future

EMISSION •

FLUORESCENCE •

FORENSICS •

GRATINGS & DEM •

OEM 🔸 RAMAN

OPTICAL SPECTROSCOPY

•

JPY • THINFILM

H Corrected Depth Profile

HORIBAGROUP

Explore the future

EMISSION •

FLUORESCENCI • FORENSICS •

GRATINGS & DEM

•

R A M A N

•

OPTICAL SPECTROSCOPY

THIN FILM •

Qualitative Depth Profile

FLUORESCENCE

HORIBAGROUP

•

THIN FILM

Explore the future

EMISSION • FORENSICS

•

•

GRATINGS & DEM •

R A M A N

OPTICAL SPECTROSCOPY •

Compositional Depth Profile

More on thin layers

•ISO TC201 SC8.

•First norm published : Introduction to use

Second norm finished : Zn coatings

• Start of a new work on thin oxides on metals

• Special edition of Surface and Interface Analysis (Vol 45, 7) based on papers presented at the first international symposium on GD-OES for Surface Analysis <complex-block>

Explore the future

EMISSION •

NCE • FORENSICS

• GR.

GRATINGS & OEM

OPTICAL SPECTROSC

Y • THINFIL

HORIBAGROUP

Repeatability of the JY GD

HORIBAGROUP

EMISSION •

FORENSICS

OPTICAL SPECT RAMAN

Zn Monolayer on Ni

- Ni: substrate, electropolished, high purity
- Zn: single atomic layer
 deposited electrochemically
 under potential deposition (UPD) method

HORIBAGRO

Explore the future

EMISSION

Surface analysis – by GDS

Conclusions

- Recent advances in theory and practice extend the range of RF GD-OES applications :
- Analysis of large samples
- Fragile samples in pulse mode
- Odd shape samples
- Layer mode offers simplified accurate CDP

GD-PROFILER

HORIBAGRO

Explore the future

EMISSION •

11011101 •

GRATINGS &

FORENSICS

& DEM •

B A M A N

• OPTICAL

SPECTROSCOPY