GDOES-Anwendertreffen

Dresden 2004

Geometrie des Sputterprozesses

Kraterdurchmesser

Sputtergeschwindigkeit Kraterprofil

$SG = a * \frac{I}{(I+b)} * e^{\bigcup U}$

U a, b, c Strom Spannung Material-Konstanten

SG = f (Spannung)

Der Exponentialterm gibt den Anteil der Teilchen an, die genügend Energie für den Sputterprozess mitbringen.

Boltzmann'sche Energieverteilung.

SG = f (Strom)

Der stromabhängige Teil der Gleichung gibt den Anteil sputterfähiger Teilchen an, die tatsächlich zum Sputterprozess beitragen.

Reaktionskinetischer Ansatz.

Ergebnis weiterer Messreihen:

- Die aus 2-d Scans ermittelten Kratervolumina stimmen mit den aus 3-d Scans bestimmten Werten überein.
- Das 2003 auf dem GDOES-Treffen in Lüdenscheidt vorgestellte Modell wurde bestätigt.
- Die Annahme einer konstanten relativen Sputterrate ist nicht zulässig.

Absolute Sputtergeschwindigkeit Nickel

Absolute Sputtergeschwindigkeit Eisen

Absolute Sputtergeschwindigkeit Aluminium

Absolute Sputtergeschwindigkeit Silicium

Absolute Sputtergeschwindigkeit 18/8- CrNi-Stahl

Relative Sputterrate von Aluminium/Eisen

Änderung der relativen Sputterrate (Massenverhältnis) etwa 7%

Relative Sputterrate von Nickel/Eisen

Änderung der relativen Sputterrate (Massenverhältnis)

etwa 8%

Relative Sputterrate von CrNi-Stahl/Eisen

Änderung der relativen Sputterrate (Massenverhältnis)

etwa 23%

Relative Sputterrate von Silicium/Eisen

Änderung der relativen Sputterrate (Massenverhältnis)

> 100%

$SG = a * \frac{I}{(I+b)} * e^{\bigcup U}$

U a, b, c Strom Spannung Material-Konstanten

Eine tiefer gehende Analyse der angegebenen Gleichung führt zunächst zu:

$SG[Mol/sec] = \frac{b*I}{96500*(I+b)} * e^{\frac{-c}{U}}$

U b, c 96500 Strom [Ampere] Spannung [Volt] Material-Konstanten Coulomb/Mol elektrochemisches Äquivalent

ein gesputtertes Teilchen pro sputterndem Argonion

Berücksichtigt man auch Mehrfachsputterprozesse, so erhält man:

 $SG[Mol/sec] = \frac{b*I}{96500*(I+b)} * \sum_{n=1}^{n=\infty} g_n e^{\left(\frac{-n*c}{U}\right)}$

U b, c 96500 g_n Strom [Ampere] Spannung [Volt] Material-Konstanten Coulomb/Mol elektrochemisches Äquivalent Gewichtung für Mehrfachprozesse

Abnahme der Sputterwahrscheinlichkeit für Mehrteilchenprozesse
Fehler der Stromanzeige korrigiert

SG[Mol/sec] =

 $96500*(I+b)*(e^{\frac{c}{U}}-a)$

h*I

I: b: U: c: 96500: a: Strom[Ampere] Grenzstrom [Ampere] Spannung [Volt] ,Onset-Spannung' elektrochemisches Äquivalent [Coulomb/Mol] Wahrscheinlichkeit von Mehrfachsputterprozessen

Bestimmung realistischer Sputterraten:

- Bestimmung der Kratervolumina an mindestens fünf Kratern. Dabei sollten deutlich unterschiedliche Strom- und Spannungs-Werte verwendet werden.
- Berechnung der Konstanten durch Anpassung der Messwerte an die angegebene Gleichung.

Relative Sputterraten gegenüber Eisen

(Verhältnis der Zahl der gesputterten Atome)

Relative Sputterraten gegenüber Eisen

(Verhältnis der Zahl der gesputterten Atome)

Geometrie des Sputterprozesses

Kraterdurchmesser Sputtergeschwindigkeit Kraterprofil

- Das Profil eines Sputterkraters verändert sich mit Strom und Spannung in charakteristischer Art und Weise.
- Es gibt drei Typen von Kraterprofilen:
 - Ein Minimum im Zentrum
 - Je ein Minimum im Zentrum und Randbereich und ein Maximum dazwischen
 - Ein Minimum im Randbereich und ein Maximum im Zentrum

NiP 5mA 334-1225 Volt

- Kann das Profil von Sputterkratern durch ein einfaches, verständliches Modell beschrieben werden?
- Wäre ein solches Modell in der Lage alle beobachteten Profile zu beschreiben?

Ableitung des Feldstärkeproportionalen Effekts

Kratertypus 1 ein Minimum im Zentrum

Kratertypus 2

 je ein Minimum im Zentrum und im Randbereich, sowie ein Maximum dazwischen

Kratertypus 3

 ein Minimum im Randbereich, sowie ein Maximum im Zentrum

Beschreibung von Symmetrieabweichungen:

 Eine genaue Betrachtung der Kratergeometrie zeigt mehr oder weniger starke Abweichungen von der Rotationssymmetrie.

Das Modell erlaubt die Erklärung einer Asymmetrie

- Annahme einer geringfügig elliptisch verformten Anode
- Annahme einer leichten Verkippung der Probe gegenüber der Anodenfront.

Silicium 400Volt 7 mAmpere

3d-Profil mit FRT-Microprof gemessen

3d-Profil unter Annahme einer Probenkippung berechnet