Möglichkeiten und Grenzen der GDMS

Jan D. Sunderkötter 24. Spektrometertagung Dortmund, 20.09.2005

1. Entwicklung der GDMS

- Kommerzielle GDMS-Instrumente seit 1984: VG 9000 (VG Isotopes)
- Weltweit ca. 100 Instrumente (über 80 % VG 9000)
- Einsatz: Reinstmetalle für Halbleiter und sputter targets
- 2005: Neue Generation von GDMS-Instrumenten Thermo Electron: Produktionseinstellung VG 9000, Nachfolgegerät auf Element 2-Basis Mass Spectrometry International: Nachfolgegerät für Kratos-Instrument.

2.1 Schematischer Aufbau

2.2 Zerstäubungs- und Ionisierungsprozess

2.3 Detektorsystem

2.4 Quantifizierung und Kalibrierung

Ion Beam Ratio IBR = $I(X^+) / I(M^+)$

c = RSF x IBR

RSF: Relative Sensitivity Factor

<u>Normalisierung</u>: Standard RSF: Std-RSF_{Fe} = 1,00

 $Std-RSF_{Mg} = RSF_{Mg/W} / RSF_{Fe/W}$

 $c_{Mg/Ta} = I_{Mg} / I_{Ta} \times Std-RSF_{Mg} / Std-RSF_{Ta}$

VG 9000 Software: umfangreicher Datensatz an Std-RSFs

20.09.2005

2.5 RSF-Werte

RSF abhängig von: Ionisierungspotential, Plasmaleistung, Gasfluss, Probengeometrie, Probentemperatur und ???

Bereich RSF (x in M): 0,3 bis 6

Unterschied RSF(x) in verschiedenen Matrices: max. Faktor 3

Ohne spezifische Kalibrierung:

c = 10 ppb entspricht Fehlerbereich von 3 - 30 ppb

3.1 Einsatzgebiete

- 1988: Installation der VG 9000 im Zentrallabor Goslar
- Hauptanwendung:
 - Wolframmetall
 - AMW und APW (nach Reduktion zu WMP)
 - Niobmetall und Nioboxid
 - Nickel-Niob
 - Tantalmetall, Tantaloxid und Tantalsilicid
 - Siliciummetall
 - Siliciumcarbid

3.2 Probenpräparation

PVDF Matritze

Isostatische Kompression (20 t)

Nichtleitendes Probenmaterial wird mit 7N Ga verpresst

20.09.2005

3.3 VG 9000 im Reinraum (Installation 1988)

3.4 Beispiel Siliciumcarbid (ZRM, BAM)

Element	zert. Wert [ppm]	GDMS (Std-RSF) [ppm]	
Al	372	307	
Cr	3,5	3,5	
Cu	1,5	1,3	
Fe	149	150	
Mg	6,3	5,3	
Mn	1,44	1,2	
Ni	32,9	36	
Ti	79	74	
V	41,4	40	
Zr	25,2	29	

3.5 Beispiel Niobmetall (RM, HCST)

Element	zert. Wert [ppm]	GDMS (Std-RSF) [ppm]
Са	263	178
Cr	4	4
Cu	33	17
Fe	50	31
Mg	17	11
Ni	15	6

4. Grenzen der GDMS

4.1 Technische Grenzen

- Folgende Elemente können nicht oder schlecht bestimmt werden:
 - H zu geringe Masse
 - Ta Material der Ionenquelle und Spalte
 - F, Cl schlecht kalibrierbar
 - O, N erfordert hohe Ansprüche an das Vakuum
- Einschränkungen durch Interferenzen
- Einschränkungen durch die Probengeometrie
- Einschränkungen durch elektrische Leitfähigkeit
- Geringer Probenabtrag, daher empfindlich für Inhomogenitäten
- Memoryeffekte
- Analysendauer

4. Grenzen der GDMS

4.2 Bestimmung der Alkalielemente in WMP

- Deutliche Minderbefunde von Na und K (Vergleich mit sAAS)
- Erhöhung der Plasmaleistung:

- Abhängig von Porosität des Probenpins: Temperatur?
- Ähnliche Erfahrung von anderen Anwendern
- Analoges Verhalten von B?

4. Grenzen der GDMS

4.3 Einfluss von Plasmaleistung und Pingeometrie

Ρ

Cr

Fe

in Wolframmatrix

5. Möglichkeiten der GDMS

5.1 Stärken der Methode

- extrem hohe Nachweisstärke
- grosser Elementumfang
- grosser dynamischer Bereich
- keine Kontaminationsgefahr
- mit Std-RSF-Werten relativ geringe Unsicherheit auch ohne spezifische Kalibrierung

5.2 Entwicklungsmöglichkeiten

- Reduzierung der Analysenzeiten durch neuartige Ionenquelle
- Automatisierung
- Analyse nichtleitender Materialien durch RF-Anregung

5. Möglichkeiten der GDMS

5.3 Nachweisstärke (Erfassungsgrenzen) für SiC

Element	EG [ppm]	Element	EG [ppm]	Element	EG [ppm]
AI	0,1	Fe	0,1	Sb	0,01
As	0,01	K	0,05	Sc	0,005
В	0,1	Li	0,005	Se	0,05
Ва	0,01	Mg	0,05	Sn	0,01
Be	0,01	Mn	0,05	Sr	0,1
Са	0,1	Na	0,1	Ti	0,1
Со	0,05	Ni	0,1	V	0,005
Cr	0,1	Р	0,05	Y	0,05
Cu	0,1	S	0,1	Zn	0,05

