Zwei Beispiele von Aktivitäten in Thun:

- Entwicklung einer GD-TOFMS
- Analyse von Blei Zirkonat-Titanat (PZT) Schichten mit gepulster GD-OES

Why TOF: it's not a filter

Definition: mass resolution: $R = m/\Delta m$

$$(\Delta m = FWHM)$$

TOF resolution 1700

TOF resolution 3400

 \Rightarrow reduce interferences

Intro: basic principle of mass separation

EMPA GD-TOF-MS Scheme

GD-TOF-MS (experimental setup)

GD-TOF-MS (zoomed view)

Calibration curve for Sn in Cu

separation of P and alcohol

counts

Depth profile of Al₂O₃ with a cromium marker of 2 nm

Probleme welche noch gelöst werden müssen:

• Die Kraterform: entweder sind die Intensitäten sehr hoch aber die Kraterform ist nicht ideal oder die Kraterform ist brauchbar aber dafür sind die Intensitäten eher tief.

• Der dynamische Bereich des Detektors ist noch nicht befriedigend. Obwohl wir bereits mehr als 7 Grössenordnungen an Intensität erreichen wären 9 bis 10 wünschenswert.. Rapid depth profiling of lead zirconate titanate (PZT) thin films by pulsed glow-discharge optical emission spectroscopy

> EMPA Materials Science and Technology aFeuerwerkerstr. 39, CH-3602 Thun, Switzerland bLerchenfeldstr. 5, CH-9014 St. Gallen, Switzerland

Piezoceramic thin films

Application: FRAM, MEMS
Mass production (industrial production line): single target

• New: DC pulsed

Application fields for thin PZT coatings

Ferroelectric-RAM (FRAM):

non-volatile memory lesigned to replace flash memory faster, less power, more easily intergrated with other circuits on a chip than flash)

http://www.pbliz.com

PZT coated optical fibers used as textile sensors:

wearable computing, built-in functional textiles

Fox, G.R. et al., J. Vac. Sci. Technol. A 14 (1996) 800

Micro-Electromechanical Systems (MEMS): sensors and actuators

http://www.semiconductor-technology.com

Process parameters

Wafer coating

DC pulsed, 250 W, 35 kHz, 9 μs, pO₂: 0.45, T_{dep}: 490°C, t_{dep}: 8.5h, d: 0.9 μm -> *,as deposited*[']

Fiber coating & Rapid thermal annealing (RTA)

T_{anneal}: 550, 600, 650°C (18°C s⁻¹) T_{anneal}: 700°C (23°C s⁻¹)

Glow Discharge-Optical Emission Spectroscopy

GD-OES depth profiling: advantages & drawbacks

Example:

 AI_2O_3 thin film

GD-OES:

- Fast (μ m/sec) and cheap method for depth profiling
- H can be measured
- Surface sensitivity: down to a few nm
- Destructive
- Calibration samples needed (here: Fe & bulk PZT)

Glow Discharge-Optical Emission Spectroscopy

Depth profiling of 'as deposited' PZT samples

Sample	Pb (at%)	Zr (at %)	Ti (at%)	O (at %)
PZT nominal	20	10.4	9.6	60.0
as deposited	16.0	5.6	7.5	43.7

Glow Discharge-Optical Emission Spectroscopy

Depth profiling of 'RTA-treated' PZT samples

Depth (µm)

Depth (µm)

Sample	Pb (at%)	Zr (at %)	Ti (at%)	O (at %)
PZT nominal	20	10.4	9.6	60.0
RTA 600 °C	22.3	9.8	12.6	25.8
RTA 650 °C	13.9	10.0	11.8	19.6

Sample Batch2: Quantitative spectra

De	nth	(m	m)
	pui	·μ	,

Sample	Pb (at%)	Zr (at%)	Ti (at%)	O (at%)	Pb/(Zr+Ti)
PZT nominal	20.0	10.4	9.6	60	1.0
PZT low oxygen	31.7	13.5	15.3	37.3	1.1
PZT high oxygen	21.5	8.9	9.4	59.8	1.2

Schlussfolgerungen

• Ein DC gepulster reaktiver Sputterprozess von einem einzelnen metallischen Target mit der Zusammensetzung Pb (55at%), Zr (22.5at%), and Ti (22.5at%) hat sich erfolgreich durchgesetzt.

• Multikristalline PZT Dünnfilme (Perovskite Typ) wurden auf Si-Wafer und auf optische Fasern abgelagert.

 Die GD-OES bewies, dass sie ein effizientes Hilfsmittel zur Bestimmung der Schichtzusammensetzung ist. Die Elementeverteilung ist durch die ganze Schicht hindurch uniform. Erste XPS und GD-OES Resultate zeigten einen Sauerstoffmangel an. Deshalb musste ein Sputterprozess mit höherer Sauerstoffflussrate ins Auge gefasst werden.