

Gepulste Glimmentladung als Ionenquelle für ein hochauflösendes Flugzeitmassenspektrometer, Kenndaten und mögliche Anwendung

Daniel Fliegel^{*}, Auristella Vázquez[¢], Jose Manuel Costa[¢] Marc Gonin[©], Kathrin Fuhrer [©], Martin Tanner^{*} und Detlef Günther^{*}

^жЕТН Zürich, ^фUniversität Oviedo (ESP), ^Θ Tofwerk, Thun (CH)

Outline

- Instrument
- Kenndaten des GD-TOF-MS (W- und V-Modus)
- Datenerfassungsystem
- Selen Speziierung mittels GC-GDTOFMS
- Zusammenfassung

 \rightarrow

Instrumentelles

Modularer Aufbau auf optischen Tisch, ermöglicht die Kopplung des TOFMS an unterschiedliche Ionenquellen

Stabilität und Präzision

Stabilität und Präzision

TOFMS ist während 500 Messungen stabil (RSD <1.5%)

- Gemessenes Isotopenverhältnis (⁶³Cu/⁶⁵Cu) entspricht dem natürlichem Isotopenverhältnis (2.247). Das gemessene Isotopen-Verhältnis war 2.228+/- 0.033.
 - RSD von verschiedenen Messreihen zeigen, dass die gemessene Intensität nur von der Counting Statistik abhängt

Massenauflösung (R)

Massenauflösung

- TOFMS bietet hohe Massenauflösung im W Modus (grösser als 5000 für hohe Massen).
- Im V Modus wird durch Halbierung der Driftstrecke nur die halbe Auflösung erreicht, dafür ist das Gerät aber empfindlicher (~eine Grössenordnung)

Linear dynamischer Bereich

Linearer dynamischer Bereich

Der linear dynamische Bereich erstreckt sich über mindestens 5 Grössenordnungen.

Neben den Hauptbestandteilen wie Ar⁺ und ArH⁺ mit Intensitäten um 500.000 konnten ²⁰⁴Pb⁺ mit Intensität um 10 bestimmt werden. Die Verhältnisse der Pb Isotope stimmen mit der natürlichenPb Isotopie überein.

Nachweisgrenzen für GC-GD Kopplung

Nachweisgrenzen für GC-GD Kopplung

Nachweisgrenzen

- Nachweigrenzen für Gase wurden bestimmt mit Werten bis $0.5 \text{ ppm} (3\sigma).$
- Absolute Nachweisgrenzen sind u.U. jedoch durch die Anzahl verfügbarer Ionen beim transienten Probeneintrag limitiert.

Für Feststoffe wurden in Ermangelung einer geeigneten Ionenquelle noch keine Nachweisgrenzen bestimmt

Datenerfassung

Einzelspektrum

Datenerfassung

5 min Aufnahme = >1 GB and Daten \rightarrow Datenreduktion!

Multidimensionale Datenerfassung

Datenerfassung mit 100 Hz, TOF kann Spektren mit mehreren kHz aufnehmen.

Multidimensionale Datenerfassung

TOFMS ermöglich Datenerfassung für alle m/z, keine Vorwahl div. Massenbereiche ist nötig.

GC-TOFMS Datenerfassungsrate ~100 Hz

Zwischen einzelnen "*blocks*" gibt es im Moment noch eine Totzeit

Optimierung – Kathoden Distanz

Optimierung – Kathoden Distanz Leistung der GD

D.Fliegel/ETH Zürich

Optimierung

Eine Vielzahl von Parametern beeinflusst das Verhältnis von Elementarer, struktureller und molekularer Information die während eines Runs aufgenommen werden kann

Parameter sind z.B. Kathoden-Anoden Abstand, Druck, Leistung, Kapillarposition,...

Einige Parameter lassen sich unabhängig voneinander messen (wie z.B. Kathoden-Anoden Distanz)

Günstigste Bedingungen sind mittlerer Abstand (8-10 mm) bei relativ tiefem Druck (0.5 mbar)

Zusammenfassung

- Kenndaten des GD-TOFMS deutlich verbessert
- Datenerfassung schneller und mehr Information wird gespeichert

Danksagung

- ETH Zürich (\$)
- EMPA Dübendorf (Leihgabe der GC)
- Physikalische Chemie ETH Zürich (Leihgabe Stromsonde)
- Werkstatt ETH Zürich (P Trüssel)
- C Lewis, V Majidi LANL
- All the Günther Group