Einfluss der molekularen Gase (N₂, H₂) auf die Fe I und Ti I Spektren

<u>E. Steers</u> und P. Šmíd (London Metropolitan University, UK)

Introduction

- Effect of molecular gases (H₂, N₂ and O₂) on analytical glow discharges has been studied intensively for the last decade
- ♦ Molecular gases affect electrical characteristics, sputtering rate, optical emission in GD-OES and ionic signal in GD-MS ⇒ analytical results can be incorrect
- H comes from residual moisture
- Hydrocarbons produced by rotary pumps
- N can be present as a residual gas in the source or come from a leakage
- Both elements can be present in the sample

Authors	Gases	Range	Approach
Fischer	N_2, O_2		
Bengtson	\mathbf{H}_{2}		Behaviour of Cr lines
Hodoroaba	H_2	0, 0.05 – 2%	Many Cu and Ar lines; one line from several elements
Oviedo Group	H_2 , N_2 , O_2	0, 0.5 – 10%	one line from several elements
Šmíd (PhD work)	\mathbf{N}_2	0, 0.02 – 2%	Many lines of Fe, Ti and Ar
Steers, Šmíd & Weiss	N ₂ , H ₂	0, 0.02 – 2%	Many lines of Fe, Ti. Ar & Ne etc
Cvetanovic		? - 3%	10 Ti I lines
Köster	\mathbf{H}_{2}		Line enhancement for analysis

V-D.Hodoroaba, thesis

Results – Fe II

E. B.M. Steers, P. Šmíd and Z. Weiss, Spectrochim. Acta Part B, 2006, 61, 414-420

Experimental – IC London

- Standard Grimm-type source with 4 mm anode tube
- Gases: Ar mixed with a premixed gas (Ar+2%H₂ or Ar+2%N₂) using a mixing system with MKS MFCs
- Electrical excitation:
 - dc with current stabilized dc power supply – constant V&i

- Vacuum uv FTS instrument:
 - Spectral range: 135-900 nm
 - ◆ Limit of resolution 0.035 cm⁻¹
 ⇒ chromatic resolving power 1.4x10⁶ and a resolution of 0.14 pm at 200 nm
 - Detection: PMT
- Advantages:
 - Wide spectral range at high resolution in rel. short acquisition times (a few minutes)
 - Accurate wavelength determination

Experimental – IFW Dresden

- Standard Grimm-type source with 4 mm anode tube and integrated voltage and current probes for rf measurements
- Gases: Ar mixed with a premixed gas (Ar+2%H₂ or Ar+2%N₂) using a mixing system with Bronkhorst MFCs
- Electrical excitation:
 - rf with free running generator
 (3.4 MHz) constant P&V_{ms}
 - ◆ dc, const V and I

- Echelle CCD spectrometer LLA ESA 3000
 - Spectral range: 200-1000 nm
 - Resolution: 5 pm at 200 nm, 27 pm at 600 nm
 - Detection: ICCD
- Advantages:
 - Rapid acquisition of spectra at high resolution (a few seconds)

Experimental

- Comparison of spectra of pure Fe and Ti recorded in pure argon and argon with various hydrogen or nitrogen concentrations
- Running in modes with const. V and const. I (dc), and const. P and const. V_{rms} (rf)
- Spectra recorded over wide wavelength range:
 - ◆ 200-300 nm (UV)
 - ◆ 300-600 nm ("visible")
- Line identification and selection unambiguous identification, sufficient intensity, free of interferences and reliable data on energy levels:
 - ◆ Fe I lines 97 lines, Fe II lines 82
 - ♦ Ti I lines 129 lines, Ti II lines 192

Emission Yield!

Effect of current

Effect Of Nitrogen

Emission Yield!

A possible explanation!

$M+H_2^+ \rightarrow H + H^+ + M^*$

Three products, so do not require an exact energy resonance to satisfy collision parameters

Nitrogen

Conclusions

- The effect of hydrogen on large number of Fe I and Ti I emission lines has been described.
- Correlation between the intensity ratios and the excitation energy has been found.
- In case of Fe I lines, strong enhancement has been observed for the lines with excitation energy between 5.3 and 5.6 eV.
- This enhancement is stronger for lower currents
- No such trends has been observed in case of nitrogen.

Ich danke Ihnen für Ihrer Aufmerksamkeit

Es freut mich, Bermerkungen zu bekommen, aber fragen Sie auf Englisch, bitte!