

Hohlkathode in Kombination mit einer Grimmschen Glimmentladung zur Spurenanalyse von Reinstmetallen

T. Gusarova, V.-D. Hodoroaba, H. Kipphardt, R. Matschat, U. Panne (BAM, Berlin)

Content

- Motivation
 Previous research
 Construction
 Results GD-OES:
 - Copper matrix Steel matrix Zinc matrix
- Results GD-MS
- Conclusions

Motivation

- PTB pure metals for definition of the fix points of the international temperature scale (Zn, In)
- Consistency check of the GD-MS results
- Grimm-type GD-OES high limits of detection rel. to GD-MS

Hollow cathode effect + Grimm-type GD-OES

Previous research

- C. Yang, W.W. Harrison Spectrochimica Acta Part B56 (2001), 1195-1208
 - Pulsed GD-AES; 10 μs, 1.8 kV, 3-torr
 - Cavity Ø 3 mm x 2 mm
 - Cu atomic and ionic lines enhancement (up to factor 18)

- A. Qayyum, M.I. Mahmood Analytica Chimica Acta 606 (2008), 108-111
 - DC Grimm GD-AES; 130 mA, 400V, 4mbar
 - Cavity Ø 6 mm x 2.5 mm, water cooled
 - Cu atomic and ionic lines enhancement (up to factor 3) at about half of the input electrical power as compared to planar cathode

Grimm-type GD-OES with hollow cathode configuration

GD-OES: Cu matrix

Preheating of the H-sample at 300 V and 270 mA for better plasma ignition

H-sample = hollow cathode sample P-sample = planar sample

CRMs	Plasma parameters			
BAM-M381; BAM-M382;	P-sample usual	700 V	20 mA	
BAM-M383; BAM-M384;	P-sample = H-sample	380 V	118 mA	
ERM-EB385; ERM-EB386		or 300 V	50 mA	
	H-sample optimal	450 V	250 mA	
	P-sample maximal	500 V	100 mA	

GD-OES: Cu matrix P-sample parameter optimisation

ERM-EB386 (with 29.1 mg·kg⁻¹ Mg)

SBR = Signal to background ratios of the magnesium line 383.83 nm

		Voltage, V				
		500	700	900	1100	
	20	SBR=0.39	SBR=0.34*)	SBR=0.38	unstable	
Current, 50 mA 100	50	SBR=0.55	SBR=0.60	SBR=0.63	unstable	
	100	SBR=0.73**)	SBR=0.66	unstable	unstable	
*) Parameters normally used for copper sample analysis ("P-sample usual") **) Optimal parameters found ("P-sample maximal")						

GD-OES: Cu matrix

Si atomic line (λ =288.157 nm) in ERM-EB386 (14.3 mg·kg⁻¹ Si)

Surface magnification (H/F) = only factor 16

GD-OES: Cu matrix

Zn (λ=330.294 nm) **Fe** (λ=371.994 nm) H-sample Intensity, n.u. H-sample P-sample P-sample **Cr** (λ=425.433 nm) **Mg** (λ=383.829 nm) Intensity, n.u. H-sample H-sample P-sample P-sample Mass fraction, mg kg⁻¹ Mass fraction, mg kg⁻¹

Calibration curves (380 V, 118 mA)

GD-OES: Cu matrix **MEAN** Better separation from spectral interferences

GD-OES: Cu matrix **EAN** Enhancement of atomic line intensity and rather reduction of ionic line intensity

Spectra of copper atomic and ionic lines of ERM-EB386 (300 V 50 mA)

Pressure (380 V 120 mA): H-sample 0.0269 mbar P-sample 0.0931 mbar Penning ioniz

Penning ionization: S + Ar* \rightarrow S++ Ar++ e⁻

GD-OES: Steel matrix

Element	Certified value
Fe	matrix
Cu	0.7 %
Ni	2.9 %
Cr	1.7 %

W

CRMs	Plasma parameters		
BAM SUS-1 R	P-sample usual H-sample optimal Same power P-sample Same power H-sample	700 V 20 mA 350 V 250 mA 500 V 102 mA 300 V 170 mA	} 51

GD-OES: Steel matrix **K BAM** Comparison at different parameters

GD-OES: Steel matrix **E** Enhancement of atomic line intensity and rather reduction of ionic line intensity

H1, H2, H3, H4 – 1-4 independent measurements of H-sample at 300 V 170 mA **Pressure spread 11 %**

P1, P2, P3 – 1-3 independent measurements of P-sample at 500 V 102 mA **Pressure spread 0.5 %**

GD-OES: Zn matrix

Preheating of the H-sample at 300 V and 80 mA for better plasma ignition

CRMs	Plasma parameters			
BAM-M601; ERM-EB322; ERM-EB323; ERM-EB324	P-sample usual P-sample = H-sample	700 V 300 V	20 mA 50 mA	
	H-sample optimal	330 V	250 mA	

GD-OES: Zn matrix Signal enhancement

Comparison of SBRs (signal to background ratios) for certified elements obtained for P- and H-sample measurements at the same and at the optimal parameters

Sample	Parameter	H-/P-sample	Cu	Cu2	Fe	Fe2	Pb	Sn	Sn2	Zn
ERM-EB324	300 V 50 mA	Н	2	1	0.3	0	0	2	0	2
	300 V 50 mA	Р	1	1	0.1	0	0	2	0	1
SBR Relationschip H-sample/P-sample		3	1	4	-	-	1	-	2	
ERM-EB323	330 V 250 mA	Н	26	1	7	2	1	5	0.2	3
	700 V 20 mA	Р	2	1	1	9	0.2	10	0.1	2
SBR Relationschip H-sample/P-sample		16	1	11	0.2	6	0.5	3	2	

GD-OES: Zn matrix Lower limits of detection

Nickel atomic line (λ =349.292 nm) in BAM-M601 and ERM-EB323

Sputtering

GD-MS: Cu matrix **KBAM**

Conclusions

H-sample in comparison to P-sample:

- Signal enhancement; same background level high SBRs
- ✓ Better separation of spectral interferences

"Use of the hot hollow cathode effect for sensitivity enhancement of Grimmtype DC Glow Discharge Optical Emission Spectroscopy" T. Gusarova, V.-D.-Hodoroaba, R. Matschat, H. Kipphardt and U. Panne

 Lower sputtered material deposition also in GD-MS. Lower Intensities than by P-sample measurement

Improvement of the Grimm-type GD-OES (signal enhancement up to factor 150) without additional construction changes of the commercial instrument - easy replacement of P- and H-samples without productivity losses is ensured.

Thank you for your attention

Cobalt atomic line (λ =345.351 nm) in the BAM SUS-1 R

