

Machbarkeitsstudie zu geeigneten Kandidaten für die Herstellung von CRM für die Bestimmung von Wasserstoff in Festkörpern

V.-D. Hodoroaba,^a D. Klemm,^b U. Reinholz,^a E. Strub,^c J. Röhrich,^d W. Bohne,^d V. Hoffmann^b and K. Wetzig^b

- ^a Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin
- ^b Leibniz Institute for Solid State and Materials Research Dresden
- ^c Universität zu Köln
- ^d Hahn-Meitner Institute (HMI), Berlin

Analytical Method	Detection of H	Quantification of H	Limitations
HotE	\checkmark	\checkmark	no local information (i.e., no depth profiles)
NRA	\checkmark	\checkmark	analysed depth of up to only 1-2 μm LoD_H ${\sim}10$ ppm
ERDA	\checkmark	\checkmark	11
SIMS	\checkmark	-	lack of H-CRM, thin layers
GD-OES	\checkmark	-	lack of H-CRM

(www.comar.bam.de)

Analytical figures of merit in GD-OES: Limit of Detection (LoD) of H

(Werkstoffanalytische Verfahren, H.-J. Hunger, Ch. 12: Glimmentladungsspektroskopie, 1995).

Analytical figures of merit in GD-OES: Limit of Detection (LoD) of H

itei B	earbeiten Anzeige	Dokument Werkzeuge F	enster Hilfe						
8	A - 4) 1 / 3 📄 💿	66,7% - 🛃 🚱 Suchen -						
				ADDITIONAL INFO	RMATION ON THE C	OMPOSITION Certificati	on is made only for the element		
	JI North	17		cated. The five repla	cements, however, conta	in a graded series for 40 eler	neals and information on the element		
	stano	nal Institute of S	tandards & Technology	not certified may be o	not certified may be of importance in the use of the material. Although these are not certified upper here				
4	Certificate of Analosis			are presented in the following table for the remaining elements.					
				Elements Detected (ppm by weight)					
		C/ 1 1D 0		10070	Upper (Estimated				
		Standard Reference Material 1265a			Limit	value)	Method		
				Tungsten	<1	(0.4)	Neutron activation		
		Electroly	tic Iron	Tin	< 2	(2)	Spark source mass spectros		
		2.000		Antimony	< 0.5	(<0.1)	Spark source mass spectron		
	This Standard Reference	Material (SRM) is in the form	disks 32 mm (1.1/4 lab is at	Silver	< 0.2	(0.02)	Spark source mass spectron		
	thick, generally for use i	n optical emission and x-ray spe	ctrometric analysis. ⁴	Zinc	<3	(<1)	Atomic absorption		
	Element	Percent by Walaks		Nitrogen	< 20	(~11)	Distillation-photometric		
	And the Association of the	CELCENT DY WEIGHT	Percent by Weight	Germanium	< 50	(-14)	Spark source mass spectrum		
	Carbon	0.0067 ± 0.0003	Cobalt 0.007	Oxygea	- 20	(63)	Vacuum fusion		
	Manganese	.0057	Titaniam (0001)	Flydrogen	< 5	(1)	Vacuum fusion		
	Phosphorus	.0011 # .0001	Arsenic (000a)b		121223	533.6			
	Sulfur	.0055 ± .0003	Aluminum (total) (0007)	Elements Sought But	Not Detected (ppm by w	(cight)			
	Silicon	.008o	Boron						
				Florenzi	Upper				
	Copper	.0058	Lead .000015	Editation (Lamor		Method		
	Chaomine	.041	Iron (by diff.) 99.9	Tantahum	-05		N		
	Vanadiam	.0072		Zirconium	<01		Neutron activation		
	vanadium	.0006		Antimone	<0.1		Spark source mass spectron		
	Molyodenum	.0050		Bismuth	<05		Neutron activation		
	"The material also is modelal	in the form of the second second		Calcium	<0.1		Spark source mass spectron		
	diameter and 102 mm (4 in) is	the the torm of chips, SRM 365, for use in-	chemical methods of analysis; rods SRM 1099, 6.4 mm (1/4 in) in	Calcun	~0.1		Atomic absorption		
	rods, SRM 665, 3.2 mm (1.8 in	n) in diameter and \$1 mm (2 in) long for an	a by vacuum hasen and neutron activition methods of analyses; and	Magnesium	=02		An and a strength		
	mercianalysis, spark source m	ass spectrometric analysis, and laser probe	analysis.	Selenium	<01		Stock absorption		
	Mahara a second			Tellurium	<01		Spark source mass spectron		
Values in parentheses are not certified as they are based on the results from a single laboratory or analytical method.				Cerium	<0.05		Spark source mass spectron		
				Lanthanum	< 0.05		Spark source mass spectron		
	CERTIFICATION: The	when the state of the state		Praseodymium	<0.05		Spark source mass spectron		
	on the results of the analy	value usted for a certified element	at is the present best estimate of the 'true' value based	Gold	< 0.02		Spark source mass spectron		
	than + 1 in the last signi	fical program. The value listed i	s not expected to deviate from the 'true' value by more	Hafnium	<0.2		Speak courses activation		
	than + S Based on the res	iscant figure reported; for a sub-	script figure, the deviation is not expected to be more	Neodymium	<0.05		Spark source mass spectron		
that \$ 5. Based on the results of homogeneity testing, maximum variations within and among samples are estimated to be less than the uncertainty figures given above.						spark source mass spectron			
			PLANNING, PREPAI	RATION, TESTING, AN	ALYSIS: This standard is or	of five replacements for the o			
Renewals of the "1200 series", 1261a-1265a were prepared from the same income 14				eight 1100 series iron	and steel SRM's. Materi	ial from the same melt is ava	ilable in a variety of forms to se		
	from adjacent positions w	thin the inpost 1 ittle or no shore	a from the same ingots used for the original series, but	checking methods of a	malysis and in calibrating	g instrumental techniques.			
analysis utilizing several analytical techniques: optical emission spectrometric analysis, J.A. Norris and D.E. Brown; x-ray fluorescence analysis, F.A. Pella and I.B. Scherr, combusticing information in Scherred by Comparison									
				The material for this s	The material for this standard was vacuum melted and cast at the Carpenter Technology Corporation, Read Pennsylvania, under a contract with the National Institute of Standards & Technology. The contract was m				
interference analysis, i.A. relia and J.K. Sieber; combustion-infrared, B.I. Diamondstone.			Pennsylvania, under a						
	The overall direction an	d coordination of the technical	manufactor of MICT 1	possible by a grant fro	m the American Iron an	d Steel Institute.			
	performed under the dire	ction of K.F.J. Heinrich, O. Men	is B.F. Scribber 11 Shalls and 17 With						
			and a seriouer, s.t. Sabitz, and J.L. Weber, Jr.	The ingots were proce	essed by Carpeater Tech	mology Corporation to prov	vide material for the highest no		
	The technical and suppo	ort aspects involved in the pres	paration, certification, and issuance of this Superiord	homogeneity. Followi	ng acceptance of the con	mposition based on NIST as	alysis, selected portions of the		
Reference Material were coordinated through the Office of Standard Reference Material were to this Standard			material were extensiv	ely tested for homogene	ity at NIST by J.R. Baldwin.	D.M. Bouchette, S.D. Rasberry			
1	W.P. Reed.		stationals of size michaelis and	J.L. Weber, Jr. Oaly t	hat material meeting a c	ritical evaluation was proces	used to the final sizes.		
	June 12 1980					.2.			
	Gaithershura MD 20000		Stanley D. Rasberry, Chief			* 6×			
	(Revision of certificate de	ded 2.24.81)	Office of Standard Reference Materials						
	the state of contribute of	100 s-s+01/							
	216 4 v 270 4 mm	1					1		

Samples: OTEK GmbH, Brieselang

14. GDS-AnwTreff, 17./18. April 2008, BAM, Berlin

Samples: SurTec, Zwingenberg

Electroplated Zn(H) on steel; Determination of the H concentration by ERDA & NRA; Stability tests

Table 1 Stability tests of the hydrogen concentration in at.-% in three electrolytically deposited zinc coatings determined by ERDA.

Sample	immediately after the deposition	after 8 months	after further 6 months
Zn(H) #1	10.2 ± 1.0	9.7 ±1.0	10.2 ±1.0
Zn(H) #2	1.2 ±0.2	1.4 ±0.2	1.4 ±0.2
Zn(H) #3	0.5 ± 0.1	0.6 ±0.1	0.6 ±0.1

KBAM

Electroplated Zn(H) on steel; Homogeneity tests; SIMS depth profile of H, Ø_{PI}=10 μm

14. GDS-AnwTreff, 17./18. April 2008, BAM, Berlin

Samples: SurTec, Zwingenberg

Coating as candidates for H-CRM (CRC): (ii) Carbon-rich hard coatings, WC(H) / steel

The corresponding hydrogen concentrations found by ERDA are 22.1 \pm 2.0 and 18.4 \pm 2.0 at.-%.

 $\varnothing_{\text{GD-Anode}}\text{=}$ 4 mm; $V_{\text{dc}}\text{=}$ 700 V; $I_{\text{dc}}\text{=}$ 20 mA;

C I 156,1 nm; W I 400,8 nm; H I 121,5 nm;

Fe I 371,9 nm; Cr I 425,4 nm; Mn I 403,4 nm; Ni I 349,2 nm; Mo I 386,4 nm; Si I 288.1 nm

14. GDS-AnwTreff, 17./18. April 2008, BAM, Berlin

Coating as candidates for H-CRM (CRC): (iii) Amorphous Si layers, a:Si(H) / Si

 $\varnothing_{GD-anode}$ = 4 mm; V_{dc}= 700 V; I_{dc}= 20 mA; H I 121.5 nm

Samples: HMI, Berlin & AXO, Dresden

Coating as candidates for H-CRM (CRC): (iii) Amorphous Si layers

 $\varnothing_{\rm GD\text{-}anode}\text{=}$ 4 mm; $V_{\rm dc}\text{=}$ 1000 V; $I_{\rm dc}\text{=}$ 18 mA (IFW Dresden) H I 121.5 nm

Coating as candidates for H-CRM (CRC): (iii) Amorphous Si layers

Coating as candidates for H-CRM (CRC): (iii) Amorphous Si layers

At least three classes of reference coatings as successful candidates for upcoming certification of the H concentration:

Electrolytically Zn(H) / steel

Carbon-rich hard coatings, WC(H) / steel

Amorphous Si layers, a:Si(H) / Si

V.-D. Hodoroaba, D. Klemm, U. Reinholz, E. Strub, J. Röhrich, W. Bohne, V. Hoffmann and K. Wetzig, Potential candidates of Certified Reference Material for determination of hydrogen concentration with Glow Discharge Optical Emission Spectrometry (GD-OES) - a feasibility study, *J. Anal. At. Spectrom.*, 2008, **23**, 460 – 462.

14. GDS-AnwTreff, 17./18. April 2008, BAM, Berlin