

April 2008 BAM Berlin

GD-OES Analyse ultradünner Schichten mit verbesserter Hardware

V. Hoffmann, D. Klemm, K. Wetzig, J. Eckert

Weiterentwicklung der optischen Glimmentladungsspektrometrie zu einem kostengünstigen und schnellen Routineverfahren der Qualitätskontrolle klein- und mittelständischer Unternehmen (2006-2008)

Geschichte eines AiF Projektes

25.03.2003	Vorbereitungstreffen zum AiF Antrag in Dresden
05.08.2003	erster Antrag
09.03.2004	zweiter überarbeiteter Antrag
16.08.2004	Antrag durch AiF mit Auflagen befürwortet
15.09.2004	Treffen zur Projektvorbereitung in Dresden (GD-Anwendertreffen)
24.11.2004	uneingeschränkte Befürwortung durch die AiF
13.12.2005	Schreiben der AiF zu
	 Aktualität des Antrages nachgewiesen
	- Aktualisierung des PBA (Fresenius ≠ KMU, TKS \Rightarrow)
20.02.2006	AIF Mitteilung über Möglichkeit zum Start des Vorhabens
	"auf eigenes Risiko" am 1.03.2006
01.03.2006	Start "auf eigenes Risiko"
12.04.2006	Kick-off Meeting
30.03.2007	Midterm Meeting
22.02.2008	Final Meeting

Propjektbegleitender Ausschuss

April 2008 BAM Berlin

- Spectruma Analytik GmbH (KMU)
- Institut für Umformtechnik Lüdenscheid (KMU)
- TAZ GmbH (KMU)
- Robert Bosch GmbH
- AMD Saxony LLC&Co.KG
- Institut Fresenius
- MAT PlasMATec GmbH (KMU)
- Spectro

beratend

- ThyssenKrupp Stahl AG
- Fraunhofer Institut Werkstoff- und Strahltechnik Dresden
- Institut für Werkstofftechnik Bremen

Forschungsziel

April 2008 BAM Berlin

Zuverlässige Analyse ultradünner Schichten mit GD-OES, um

- die Qualität zu überprüfen (ISO 9001)
- die Ursache von Versagen zu finden

wobei:

- der Gerätehersteller (Spectruma) die Technologie übernimmt
- GD-OES Nutzern das Know-How zur Verfügung steht

Randbedingung für alle Verbesserungen ist, die Erhaltung

- der leichten Bedienbarkeit
- der hohen Analysengeschwindigkeit

Forschungsansatz

April 2008 BAM Berlin

Reduzierung der störenden leichten Gase (H, C, N, O) während der Analyse -> hinreichend gute und schnelle Evakuierung vor jeder Analyse

- hinreichend kleine Leckrate
- hinreichend niedriger Enddruck (TMP)
- Sauberkeit des Gases und der Quelle

-> Kombination mit aktivierte Desorption

Kalibrierung notwendig (H, C, N, O)

- Quantifizierung
- untergrundäquivalente Konzentration (BEC-Wert)
- Abschätzung der Massenbelegung d. Kontaminationen

Test bei Anwendungen

Ausgangssituation: Bosch 1.5 µm dicke TiN-Schicht April 2008 BAM Berlin

Problem bei Herstellung von TiN-Schichten: - Werkzeugstandzeiten schwanken um ± 50 Prozent

Problem bei GD-OES Analyse:

- In ersten 200 - 300 nm störende Einflüsse durch (H,C,N,O)

April 2008 BAM Berlin

Problemstellung:

Reduzierung der Kontaminationen

Quellen der Kontaminationen

Quellen der Kontaminationen

April 2008 BAM Berlin

 verursacht durch Probenwechsel kurzzeitig erhöhte Gehalte im Plasma

> alle Quellen- und Probenoberflächen, die sich im Bereich des Plasmas befinden (Probe, Anode)

• konstanter Untergrund permanente Gehalte im Plasma

> Gaszusammensetzung, Leckströme, Gasabgaben von Oberflächen mit großen Zeitkonstanten (Lecks, Gasverunreinigungen)

Quellen der Kontaminationen

Anodeninnenfläche/REM

April 2008 BAM Berlin

Stand der Gerätetechnik

Bestimmung von Vakuumkenngrößen Diskussion von Strategien zur Reduzierung von Kontaminationen

Vacuum plan - GDA 750

Vakuum System - GDOES

Enddruck:

~10⁻² mbar

<10⁻³ mbar (5s)

<10⁻⁴ mbar (30s)

<5* 10⁻⁵ mbar (60s)

8* 10⁻⁶ mbar (500s) ~9*10⁻⁵ mbar*l/s April 2008 BAM Berlin

<10⁻⁶ mbar*l/s

Feindruckregler

April 2008 BAM Berlin

Abhängigkeit des Hinterdrucks vom Vordruck und vom Regler

Fluss: 0...500 sccm

ohne Feindruckregler:VordruckΔHinterdruck500 mbar150 mbar

TESCOM Regulus 1 (0...500 mbar)Vordruck500 mbar5 mbar

TESCOM Regulus 3 (0...1000 mbar)VordruckΔHinterdruck1000 mbar15 mbar

Zeitkonstante: mehrere Sekunden

Datenblatt: Regulus 1

Gasartabhängigkeit und "Sättigung" des verwendeten Pirani im Sensor PTR 90 von Leybold

April 2008 BAM Berlin

Stand der Gerätetechnik

Bestimmung von Vakuumkenngrößen Diskussion von Strategien zur Reduzierung von Kontaminationen

Druckanstiegskurve

April 2008 BAM Berlin

$$I_L = V \frac{\Delta p}{\Delta t}$$

 $\Rightarrow relativ schnell$ $\Rightarrow Enddruck p_e und$ Leckstrom I_L

Abpumpkurve

Abpumpverhalten - mathematisches Modell -

April 2008 BAM Berlin

 $I_E(t) = I_L + I_{Perm} + I_{GA}$

 $(I_{Perm} \ll I_L, I_{GA})$

modifizierter Ansatz:

$$V\frac{dp}{dt} = I_E(t) - S_{eff} p$$

zeitunabhängig: $I_L = const$

zeitabhängig:

$$I_{GA} = f(t) = I_{GA0} \exp(-t / \tau_{GA})$$

Lsg. der Dgl.:

$$p = p_0 \exp(-\frac{S_{eff}t}{V}) - p_{e0} \exp(-\frac{t}{\tau_{GA}}) \exp(-\frac{S_{eff}t}{V}) - \frac{I_L}{S_{eff}} \exp(-\frac{S_{eff}t}{V}) + p_{e0} \exp(-\frac{t}{\tau_{GA}}) + \frac{I_L}{S_{eff}}$$

Messgrößen:p,tbekannte Größen:V, pofreie Parameter:Seff, pe0, τGA, IL

Klemm D, Hoffmann V, Edelmann C.

Evaluierung von Abpumpkurven am Beispiel einer Glimmentladungsquelle. Vakuum in Forschung und Praxis. Im Druck 2008

Kennkurven

April 2008 BAM Berlin

Diskussion:

a) Enddruck p_e jede Messung b) Druckanstiegskurve $p_{e,}I_L$ 1x täglich c) Abpumpkurve $S_{eff'}p_{e0}$ bei Bedarf

April 2008 BAM Berlin

Stand der Gerätetechnik Bestimmung von Vakuumkenngrößen Diskussion von Strategien zur Reduzierung von Kontaminationen

,Dekontamination' mit gepulster GDOES

• gepulstes Reinigen mit XXX Pulses + normale DC-GDOES

Ableiten des Bias

10-

April 2008 BAM Berlin

H. Yasuhara, A. Yamamoto, K. Wagatsuma, and F. Hiramoto, Iron and Steel Institute of Japan International 46 (2006) 1054-1058.

RF

RF Bias abgeleitet

DC

Fremdzündung

April 2008 BAM Berlin

 \Rightarrow Zündung erfolgt bei niedrigen Spannungen

Anwendungsbeispiel

April 2008 BAM Berlin

Routineuntersuchungen an Titannitridschichten für die Qualitätssicherung

Kooperation mit Bosch GmbH Bamberg und PlasMATec Dresden

TiN-Hartstoffschicht

TiN-Hartstoffschicht

April 2008 BAM Berlin

Anwendungsbeispiel

Schichtdickenhomogenität von Tantalnitridschichten

Kooperation mit

Fraunhofer Institut für integrierte Systeme und Bauelementetechnologie (IISB) in Erlangen

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

TaN Films – Preparation

April 2008 BAM Berlin

Abscheideverfahren: Lineares PVD Magnetron Sputtern mit linearer Bewegung der Wafer

Schichtdickeneinstellung durch Wafer-Geschwindigkeit und Anzahl an Bewegungen:

GDOES

• Bildung von Tantaloxid (Ta₂O₅) auf Tantalnitrid

S.Kim, D.J.Duquette, Surface&Coating Technology 201 (2006) 2712-2716

bestätigt durch XRR und EELS

GDOES – TaN

These: Selektives Sputtern von N (und O)

Annahme: vorwiegend ballistischer Effekt bekannt für vergleichbare Materialien (TaC, WN2, SiC, TiC)

- Phase I Energieübertrag ist effizienter für N
- Phase II

Anreicherung von Ta an der Oberfläche 'Gleichgewicht' von Ta & N im Plasma

• Phase III

N Signal muss eher als Ta abnehmen

Ergebnisse TaN

April 2008 BAM Berlin

GD-OES

Sputterzeit von Ta Min: 0.930 s

Max: 0.965 s

 $\sim 50 \pm 1 \,\mathrm{nm}$

4 Punkt Methode: 58.7 $\Omega/sq \pm 2.0\%$ (Schichtwiderstand)

X-Ray Reflektometrie: 49.27 nm ± 0.65 % (Schichtdicke)

TaN_10nm	#1
	#2
TaN_20nm	#1
	#2
TaN_50nm	#1
	#2

Ermittelte Schichtdicke (CTEM / XRR) 11.5 nm / 11.2 nm ± 0.54% 11.7nm / 11.1 nm ± 0.67% 22.0nm / 20.8 nm ± 0.52% 21.9nm / 20.8 nm ± 0.43% 48.6nm / 49.9 nm ± 0.52%

Widerstandsmessung
(4 PP)
371.2 Ω/sq $\pm 3.3\%$
411.1 Ω/sq ± 2.0%
156.5 Ω/sq $\pm 1.7\%$
169.9 Ω/sq ± 1.7%
$53.4 \Omega/sq \pm 1.4\%$
58.7 Ω/sq $\pm 2.0\%$

Sputtering Zeit
(GD-OES)
0.227 s ± 3.4%
0.222 s ± 3.0%
0.409 s ± 1.2%
0.411 s ± 1.6%
0.950 s ± 1.0%
0.956 s ± 0.8%

Quantifizierung

April 2008 BAM Berlin

Kalibrierung mit Schichtstandards

c(N) und c(Ta) im FZ Rossendorf mit RBS, ERDA und NRA bestimmt

Quantifizierung

April 2008 BAM Berlin

Anwendung – TaN 50nm

rf-GD-OES (900V, 1.8 hPa)

mit Vorsputtern

ohne Vorsputtern

Monlagen auf Cu

April 2008 BAM Berlin

Monolage auf 50nm Cu

D. Klemm, M. Stangl, A. Peeva, V. Hoffmann, K. Wetzig, and J. Eckert, Analysis of Interface Impurities in Electroplated Cu Layers by Using GD- OES and TOF-SIMS, Surf. Interface Anal. (2008) K. Shimizu, R. Payling, H. Habazaki, P. Skeldon, and G. E. Thompson, Rf-GDOES depth profiling analysis of a monolayer of thiourea adsorbed on copper, J. Anal. At. Spectrom. 19 (2004) 692-695.

Zusammenfassung

April 2008 BAM Berlin

Weiterentwicklung der GD-OES Hardware Gerätezustand vakuumtechnisch kontrollierbar Tiefenprofilanalytik mit GD-OES für <u>dünne</u> Schichten verbessert

- TiN
- Ti und N Linien zeigen H-Effekt
- großer Einfluss von Kontamination (Quelle)
- großer Einfluss von Meßmodi (Vorsputtern)

• TaN

- Quantitative Tiefenprofile mit Schichtstandards
- Bestimmung von Schichtdickenhomogenität (± 5%) (Auswertung der Sputterzeit)

Danksagung

IFW-Mannschaft

- Dr. J. Acker
- R. Buckan
- V. Efimova
- Dr. W. Gruner
- R. Keller
- M. Hermenau
- Dr. V. Hoffmann
- F. Lindert
- G. Pietzsch

- S. Sperling
- M. Stangl
- F. Thunig
- M. Uhlemann
- A. Voidel
- Dr. R. Voigtländer
- Dr. H. Wendrock
- I. Wetzig
- Prof. K. Wetzig
- D. Zimmerhäckel

Danksagung

- Spectruma Analytik
 - M. Analytis
 - R. Meihsner
 - R. Brünner
- Steinbeiss-Zentrum
 - Prof. Chr. Edelmann
- Robert Bosch GmbH - W. Verscharen
- MAT GmbH
 - A. Mucha
- ThyssenKrupp AG - W. Hupe

BAM Berlin • – U. Reinholz, D. Hodoroaba

April 2008

BAM Berlin

- HMI Berlin - E. Conrad
- IFU Lüdenscheid/TAZ GmbH - M. Köster
- Fh IISB Erlangen M. Kozlowska
- Fh IST Braunschweig - H. Brandt
- AMD Dresden – A. Peeva, A. Preusse