

Gepulste GD-MS

Thin Film Analysis with Pulsed Fast Flow Glow Discharge Mass Spectrometry

GDS Usermeeting Duisburg 2013 Dr. Joachim Hinrichs Thermo Fisher Scientific (Bremen) GmbH Karol Putyera EAG Labs, Liverpool, NY, USA

Inhalt

- µs-pulsed-FF-GD-MS: Beispiele für Tiefenprofile
- Verhalten der gepulsten Quelle
- Andere Anwendungen
- Exkurs: Schwefel-Untergrund

Sputterrate mit pGD

Kalibrierprobe: Cr/Ni abwechselnd mit Cu; jeweils 100nm Dicke.

Sputterrate ~ 1.3 nm pro Sekunde

Bestimmung sehr dünner Schichten

Tiefenprofil Dünnschichtsolarzelle auf Glassubstrat

GD-OES-Tiefenprofil (Arne Bengtson)

Typical GD-OES depth profiling results of oxidized layer on low-alloy steel (Results from ISO 25138:2010 International Test Method development).

EAG: Tiefenprofile an oxidierter LAS-Probe

Multi-element determination on oxidized low-alloy steel sample; 100 points for 14 elements; data frequency around 10 nm. Profiles in rows 1 and 5.

$\mu \text{s-FF-GD-MS}$ in HAS

Distribution of Cu and Ti at the ppm level in the interface regions between the alumina coating on high-alloy steel.

Alumina coating on HA steel: 5 μ m; 50 points for 16 elements; data frequency ~ 100 nm

Kombination pGD und kontinuierliche GD

For matrix elements the distribution from top to 30 μ m depth is shown; for minor elements only the pulsed mode profile of the top 5 μ m layer is shown.

Thermo Fisher

Verhalten pGD – Gasfluss; Cu BAM 376

Verhalten pGD – Entladespannung Cu BAM 376

Verhalten pGD – Pulslänge @1kHz – BAM376

Robustheit – rauhe Oberflächen

Anwendbar auf rauhe Oberflächen. Der Sputterprozess findet Schicht für Schicht statt, die Anfangsrauheit bleibt weitgehend erhalten

Bestimmung von Spurenelementen

Kleinerer Sputterkrater = gleichmäßigerer Abtrag

Empfindlichkeiten bei versch. Modi und Anodendurchmessern

Nickel alloy CRM BAS346A in Medium Resolution

	8 mm Ar	ode Cap	4 mm Anode Cap			
Element	Standard Mode [cps] / ppmw	Pulse Mode [cps] / ppmw	Standard Mode [cps] / ppmw	Pulse Mode [cps] /ppmw		
Mg	33000	3600	210	92		
AI	48000	32200	290	130		
Ti	33800	31000	260	37		
v	42500	41000	380	70		
Cr	15900	11000	140	51		
Со	25200	21000	370	76		
Ni	15500	13200	220	64		
Ga	11500	9700	81	16		
Мо	6100	4000	37	14		
Sn	1200	740	10	3		
Sb	2700	4900	73	4		
Pb	8700	3800	50	6		
Bi	10100	2000	29	2		

Zusammenfassung µs-FF-GD-MS

Einsatz für Tiefenprofile:

- Abtragsrate ~nm / s
- hohe Empfindlichkeit der Methode bleibt weitgehend erhalten
- RSF dicht an den theoretisch vorhergesagten relativen Elementempfindlichkeiten anhand von Ionisierungspotentialen = kaum Korrektur der Rohdaten durch Faktoren notwendig. Ideal für Uebersichtsanalysen und Tiefenprofile
- dies bewirkt auch höhere Empfindlichkeit der schwer ionisierbaren Elemente
- Aenderung von Plasmaparametern hat wenig Effekt auf die Elementkonzentrationen; daher sehr weiter nutzbarer Bereich möglich

Positionierung:

- z.T. aehnliche Tiefenauflösung SIMS, aber schneller, günstiger und sehr kleine Kalibrierfaktoren
- nicht so schnell wie GD-OES, aber auch f
 ür den Spurenbereich; leicht zu kalibrieren

Einsatz für Bulk-Messungen:

- auch für schwierige Metalle wie In, Ga, Te, wahrscheinlich auch Ti, Mg
- deutlich geringerer Abtrag heisst auch weniger häufiges Wechseln/Reinigen der Anodenteile (Anodenkappe, Cone)
- längere Vorsputterzeit notwendig am besten Kombination kont. DC mit pGD
- bessere Langzeitstabilität, wohl vor allem wg. des geringen Effekt des Gasflusses auf die Elementverhältnisse
- günstiger Einfluss auf Empfindlichkeitsfaktoren, durch zeitliche/räumliche Trennung von Sputtern/Anregung/Ionisierung im Gasstrom

Exkurs: niedrige Schwefelkonzentration

- häufig erhält man einige hundert ppb S Untergrund
- in Si sogar ppm-Bereich
- Beispiele
- Lösungsmöglichkeiten

S (und O) Eintrag aus Stahlkapillaren

Schwefel in 6N Cu (Kundenmessung)

Testmessungen mit verschiedenen Grafitkappen:

[ppm]	#69_BLANC O_6N	#74 PLANC	#79_BLANC O_6N_SPO3	#84_BLANC O_6N_SPO4	#89_BLANC O_6N_SPO5	#94 BLANC	#99_BLANC O_6N_SP07	#104_BLAN	#107_BLAN	#112_BLAN	#117_BLAN
		0_6N_SPO2				#94_BLANC		CO_6N_SP0	CO_6N_SP0	CO_6N_SP1	CO_6N_SP1
						0_6N_5P06		8	9_PyC	0_PyC	1_PyC
~8min							new SiC	bad batch	cleanest		
presputter							paper	of C caps	caps		
Mg24(MR)	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.002
Al27(MR)	0.001	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.005	0.001	0.009
Si28(MR)	0.024	0.024	0.027	0.028	0.039	0.013	0.466	0.017	0.020	0.026	0.025
P31(MR)	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000
S32(MR)	0.035	0.044	0.068	0.054	0.034	0.053	0.194	0.139	0.014	0.029	0.020
Cr52(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn55(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe56(MR)	0.000	0.001	0.002	0.001	0.001	0.000	0.000	0.001	0.001	0.000	0.007
Co59(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ni60(MR)	0.000	0.001	0.000	0.001	0.000	0.000	0.001	0.001	0.001	0.000	0.001
Zn68(MR)	0.002	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
As75(MR)	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.001	0.001
Se82(MR)	0.001	0.003	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.001	0.002
Ag107(MR)	0.016	0.017	0.017	0.020	0.015	0.025	0.016	0.023	0.016	0.017	0.027
Cd114(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
In115(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sn117(MR)	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Sb121(MR)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001
Te130(MR)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001
Au197(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pb208(MR)	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bi209(MR)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Beispiel aus der Routine:

#	1	2	3	4	5	6	7	8	9	10	S	3s
S32(MR)	0.032	0.029	0.030	0.031	0.032	0.033	0.036	0.028	0.031	0.031	0.0023	0.007

Auflösung 4000 trennt ¹⁶O₂ zuverlässig von ³²S, kein Tailing

Haupteinträge für Schwefel aus verschiedenen Quellen:

- 1) SiC-Schleifpapier: Proben abfräsen, oder Schleifpapier einige Male vorab benutzen
- 2) Grafit-Anodenkappen können signifikante Mengen S enthalten; PyC-Beschichtung hilft. Edelstahlkomponenten sind ebenfalls gut.
- 3) Reinigung Grafitteile mit Wasser und Säuren hochreine Qualität benötigt, oder trockene Reinigung
- 4) Gas: kaum Eintrag; trotzdem ist eine Gasreinigungsanlage ratsam, um die Gasqualität möglichst gleich zu halten
- 5) Eintrag aus Stahlkapillaren zum Probengas: "Schwefel-Kit" mit S-Gasfalle und speziell beschichteten Kapillaren

Damit sollte der Schwefeluntergrund <100ppb erreicht werden können. Beste Werte: ~5ppb in Cu

Danke für die Aufmerksamkeit!

