

SELEKTIVE ANREGUNG IN DER GLIMMENTLANDUNG – IST DAS IN DER PRAKTISCHEN ELEMENTARANALYSE WICHTIG? E.B.M. Steers, S. Mushtaq

London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, UK <u>e.steers@londonmet.ac.uk</u>

Gladnet Work Package 2 – Effect of added molecular gases on fundamental processes: Dr Petr Smid, ER LondonMet, (AQura) Viktoria Weinstein, ESR LondonMet Sohail Mushtaq, ESR, Imperial College (Postdoc. Fellow, London Metropolitan University.)

Many thanks to these colleagues, to Dr Juliet Pickering for the use of the Imperial College VUV Fourier Transform spectrometer, to the EC for the Gladnet RTN, 2007-2011, (Contract No. MRTN-CT-2006-035459 and to Dr Volker Hoffmann and Dr Zdenek Weiss for experimental assistance and helpful discussions.

Excitation and Ionisation Processes

Electronic excitation (EE) and ionisation (EI):

Collisions with metastable atoms – Penning Ionisation (PI) and Penning Excitation (PE)

PI: $A_o + B_m \Rightarrow A_o^+ + B_o^- + e + \Delta E$ or $A_o + B_m \Rightarrow A^{+*} + B_o^- + e + \Delta E$,

PE: $A_o + B_m \Rightarrow A^* + B_o + \Delta E$

Collisions with ions – charge transfer

Symmetric Charge Transfer: $A^+ + A \Rightarrow A + A^+$

Asymmetric Charge Transfer (ACT): $A^+ + B \Rightarrow A + B^{+*} + \Delta E$ Collisions with high energy ions and atoms Radiative decay from higher energy levels ('cascade')

Electronic excitation (EE) and **ionisation (EI)**: Excitation functions for some He I lines

Curve	Wavelength	Upper level	Lower
	/nm		level
1	501.567	3p ¹ P ₁	2s ¹ S ₀
2	396.473	4p ¹ P ₁	2s ¹ S ₀
3	388.865	$3p {}^{3}P_{2,1,0}$	$2s {}^{3}S_{1}$

Ground State 1s^2 {}^1S_0 Dotted curve – calculated Full curve = experimental

Collisions with metastable atoms

Penning Ionisation (PI) Penning Excitation (PE)

PI: $A_o + B_m \Rightarrow A_o^+ + B_o^- + e + \Delta E$ or $A_o + B_m \Rightarrow A^{+*} + B_o^- + e + \Delta E$ ΔE positive, but need not be small; non-resonant reaction

PE: $A_o + B_m \Rightarrow A^* + B_o + \Delta E$ ΔE small; energy resonance needed

A & B can be ATOMS or IONS

Copper – ions produced by PI either in ground state or in a metastable state

Penning Ionisation (contd)

For Fe II, no transitions observed from levels excited by Penning Ionisation; levels in RED are metastable

Collisions with ions – charge transfer

Symmetric Charge Transfer:

 $A^+ + A \Rightarrow A + A^+$

Momentum of particles unchanged

Asymmetric Charge Transfer (ACT): A⁺ + B \Rightarrow A + B^{+*} + Δ E

ΔE must be small, normally positive (exothermal), can be negative (endothermal). Resonant reaction

Ionisation energies – O 13.617 eV, Kr 13.999 eV

Partial energy level diagram for Cu

ARGON with added Hydrogen. Copper sample

Hodoroaba: 2.5 mm diam. anode tube, fixed voltage and pressure. Intensities recorded by setting on one line with monochromator, varying the H_2 concentration. Current falls when hydrogen is added.

Weinstein: Spectrum recorded over very wide ranges - e.g 200-300 and 300-600 nm - with FT spectrometer; then to next H_2 concentration.

- A. 2.5.mm anode tube, fixed voltage and pressure. Very similar trends to those observed by Hodoroaba.
- B. 4 mm anode tube, fixed voltage (700 V), current (20 mA), pressure must be increased when H₂ added. Same trends as Hodoroaba, but magnitude different.

Effect produced by hydrogen depends on discharge conditions

Effect of added hydrogen (contd)

Intensities normalised to 1 in pure Ar

Argon Asymmetric Charge Transfer

Ar-ACT possible for both Fe and Ti

ADDED OXYGEN (Sohail Mushtaq)

Two approaches – plot against upper energy level for fixed oxygen content, OR plot intensity of individual lines against oxygen concentration.

ACT by the added gas -

5 years ago, paper by Steers, Smid & Weiss on H-ACT. - selective excitation at 13.6 eV.

Sohail Mushtaq has observed O-ACT also at 13.61 eV., most obvious in neon. Also with neon. ACT is produced by the metastable ²D O⁺ state at 16.93 eV

Oxygen ACT (O-ACT)

And in practical analysis??

Binary alloys - competition for argon ions Aluminium/zinc. Copper/zinc (Weiss)

Be very cautious of ionic lines, total excitation energy ~13.0-13.6 eV and ~15.4-16.0 eV

Mn II lines, Intensity ratio vs energy of upper level

Intensity Ratio Ar+H2 / Ar

Energy of upper level / eV

Mn II lines, Intensity ratio vs hydogen concentration

Hydrogen concentration, %

Intensity Ratio Ar+H2 / Ar

Mn I lines, Intensity ratio vs energy of upper level

△ O.05% H2 ◇ 0,10% H2 □ 0.50% H2

Energy of upper level / eV

Mn I lines, Intensity ratio vs hydrogen concentration

CONCLUSIONS

The more you look, the more you find!!

In OES, the existence of selective excitation mechanisms in Glow Discharges (NOT IN THERMAL EQUILIBRIUM!) means that individual spectral lines are affected in differing ways by changes in the plasma gas or the presence of molecular gases (H_2 and O_2).

Magnitude of the effects differ with discharge conditions.

Many, but not all, of the effects become significant at molecular gas concentration higher than those occurring in analytical practice.

Vielen Dank für Ihre Aufmerksamkeit!