Microsecond Pulsed Glow Discharge Spectrometry

M. Voronov, V. Hoffmann IFW Dresden 16. Deutsches Anwendertreffen "Analytische Glimmentladungs-Spektrometrie" 24.-25. April 2013 Duisburg

• Electrical current prepeak

Plasma emission prepeak

W.W. Harrison, W. Hang, X. Yan, K. Ingeneri, C. Schilling, J. Anal. At. Spectrom., 1997, **12**, 893

Radiation prepeak and afterpeak

M. Voronov, V. Hoffmann, T. Wallendorf, S. Marke, J. Mönch, C. Engelhard, W. Buscher, S.J. Ray, G.M. Hieftje, *J. Anal. At. Spectrom.*, 2012, **27**, 419 **5**

Shapes of craters in Cu samples sputtered with pulsed dc discharge at three different duty cycles (0.05, 0.2 and 0.4) and various pulse lengths (10–1000 μ s) (800 V, 7 hPa).

V. Efimova, V. Hoffmann, J. Eckert, *Spectrochmimca Acte part B*, 2012, 76, 181

PGD applications: commercial applications

M. Voronov, P. Šmíd, V. Hoffmann, Th. Hofmann, C. Venzago, J. Anal. At. Spectrom., 2010, **25**, 511

PGD applications: commercial applications

PGD applications: commercial applications

G. Churchill, K. Putyera, V. Weinstein, X. Wang, E.B.M. Steers, J. Anal. At. Spectrom., 2011, 26, 2263

Electrical current prepeak

Plasma emission prepeak

10

Electrical current prepeak

Modified fast flow Grimm type source. Ar flow = 75 sccm, p = 2.5 hPa.

8-mm Grimm type source, U=1000 V, p=6.7 hPa.

V. Hoffmann, V.V. Efimova, M.V. Voronov, P. Smid, E.B.M. Steers, J. Eckert, *Journal of Physics: Conference Series*, 2008, **133**, 012017

Electrical current prepeak: modelling results

M. Voronov, V. Hoffmann, W. Buscher, C. Engelhard, S.J. Ray, G.M. Hieftje, J. Anal. At. Spectrom., 2012, 27, 1225

• Electrical current prepeak

Plasma emission prepeak

14

Strong prepeak

2 prepeaks

2 prepeaks, the 1st one is strong

Moderate prepeak

	Line	Lower level	Upper level	Lower state	Upper state
		energy (eV)	energy (eV)		
	Ar I 415.9	11.55	14.53	$3p^5 (^2P_{3/2}) 4s {^2[3/2]_2^0}$	$3p^5 (^2P^0_{3/2}) 5p ^2[3/2]_2$
	Ar I 420.1	11.55	14.50	$3p^5 (^2P_{3/2}) 4s {^2[3/2]_2^0}$	$3p^5 (^2P^0_{3/2}) 5p ^2[5/2]_3$
	Ar I 603.2	13.08	15.13	$3p_5 (^2P_{3/2}) 4p ^2[5/2]_3$	$3p^5 (^2P^0_{3/2}) 5d ^2[7/2]^0_4$
	Ar I 696.5	11.55	13.33	$3p^5 (^2P_{3/2}) 4s {}^2[3/2]^0_2$	$3p^5 (^2P^0_{1/2}) 4p ^2[1/2]_1$
	Cu I 249.2	0	4.97	3d ¹⁰ (¹ S) 4s ² S _{1/2}	3d ⁹ (² D) 4s4p (³ P ⁰) ⁴ P ⁰ _{3/2}
	Cu I 261.8	1.39	6.12	$3d^9 4s^2 {}^2D_{5/2}$	3d ¹⁰ (¹ S) 5p ² P ⁰ _{3/2}
Strong prepeak	Cu I 282.4	1.39	5.78	$3d^9 4s^2 {}^2D_{5/2}$	3d ⁹ (² D) 4s4p (³ P ⁰) ² D ⁰ _{5/2}
	Cu I 296.1	1.39	5.57	$3d^9 4s^2 {}^2D_{5/2}$	3d ⁹ (² D) 4s4p (³ P ⁰) ² F ⁰ _{7/2}
2 nreneaks	Cu I 324.7	0	3.82	3d ¹⁰ (¹ S) 4s ² S _{1/2}	3d ¹⁰ (¹ S) 4p ² P ⁰ _{3/2}
2 propeans	Cu I 327.4	0	3.79	3d ¹⁰ (¹ S) 4s ² S _{1/2}	3d ¹⁰ (¹ S) 4p ² P ⁰ _{1/2}
2 prepeaks, the 1 st	Cu I 368.7	3.82	7.18	3d ¹⁰ (¹ S) 4p ² P ⁰ _{3/2}	3d ¹⁰ (¹ S) 6d ² D _{5/2}
- propound, inc 1	Cu I 465.1	5.07	7.74	3d ⁹ (² D) 4s4p (³ P ⁰) ⁴ F ⁰ _{9/2}	3d ⁹ 4s (³ D) 5s ⁴ D _{7/2}
one is strong	Cu I 510.6	1.39	3.82	$3d^9 4s^2 {}^2D_{5/2}$	3d ¹⁰ (¹ S) 4p ² P ⁰ _{3/2}
	Cu I 515.3	3.79	6.19	3d ¹⁰ (¹ S) 4p ² P ⁰ _{1/2}	3d ¹⁰ (¹ S) 4d ² D _{3/2}
Moderate prepeak	Cu I 521.8	3.82	6.19	3d ¹⁰ (¹ S) 4p ² P ⁰ _{3/2}	3d ¹⁰ (¹ S) 4d ² D _{5/2}
	Cu I 522.0	3.82	6.19	3d ¹⁰ (¹ S) 4p ² P ⁰ _{3/2}	3d ¹⁰ (¹ S) 4d ² D _{3/2}
	Cu I 570.0	1.64	3.82	$3d^9 4s^2 {}^2D_{3/2}$	3d ¹⁰ (¹ S) 4p ² P ⁰ _{3/2}
	Cu I 578.2	1.64	3.79	$3d^9 4s^2 {}^2D_{3/2}$	3d ¹⁰ (¹ S) 4p ² P ⁰ _{1/2}
	Ar II 294.3	17.14	21.35	3 s ² 3 p ⁴ (³ P) 4 s ² P _{3/2}	$3s^2 3p^4 (^1D) 4p {}^2P^0_{3/2}$
	Ar II 329.4	19.87	23.63	3s ² 3p ⁴ (³ P) 4p ² P ⁰ _{3/2}	3s ² 3p ⁴ (³ P) 4d ² P _{3/2}
	Ar II 378.1	19.49	22.77	3s ² 3p ⁴ (³ P) 4p ⁴ D ⁰ _{7/2}	$3s^2 3p^4 (^{3}P) 4d {}^{4}D_{7/2}$
	Ar II 427.8	18.45	21.35	3s ² 3p ⁴ (¹ D) 4s ² D _{5/2}	$3s^2 3p^4 (^1D) 4p {}^2P^0_{3/2}$
	Ar II 434.8	16.64	19.49	3s ² 3p ⁴ (³ P) 4s ⁴ P _{5/2}	$3s^2 3p^4 (^{3}P) 4p 4D_{7/2}^{0}$
	Ar II 461.0	18.45	21.14	$3s^2 3p^4 (^1D) 4s {}^2D_{5/2}$	$3s^2 3p^4$ (¹ D) $4p {}^2F^0_{7/2}$
	Ar II 611.5	19.12	21.14	$3s^2 3p^4 (^1D) 3d ^2G_{9/2}$	$3s^2 3p^4$ (¹ D) $4p {}^2F_{7/2}^0$
	Cu II 224.7	2.72	8.23	$3d^9 (^2D) 4s {}^3D_3$	3d ⁹ (² D) 4p ³ P ⁰ ₂

Outlook

Summary

- PGD can enhance detected analytical signal and reduce thermal stress of the sample
- Electrical current prepeak is generated by Ar heating and expansion at the leading edge of the discharge
- Plasma emission properk exists at all detected lines at high voltage. Profile of the prepeak depends on the transition.