

Sicherheit in Technik und Chemie

26.09.2019

BESTIMMUNG VON HALOGEN IN METALLEN MITTELS SPEKTROMETRISCHER VERFAHREN

Silke Richter, Jens Pfeifer, Carlos Abad, Maria Dommaschk, Sebastian Recknagel

www.bam.de

Overview

Why halogenes in pure metals?

Short excursion into Metrology

How

Calibration with liquid doped pressed powder pellets Calibration with sintered samples

Improvement Comparison Summary and Outlook

Metrology

Why?

The science of measurement

- Comparability of measurement data e.g. results of blood test, data in industrial and research labs
- For Quality Assurance (ISO/EN 17025) and Safety

How?

High Purity Materials

- serve as primary standards for chemical measurements
- used to establish SI traceability

DIN 51723:2002-06 Determination of fluorine content

Reference: Lucelia Hoehne et. al, Feasibility of pyrohydrolysis as a clean method for further fluorine determination by ISE and IC in high purity nuclear grade alumina. Microchemical Journal **2019**, *146*, 645-649.

GD-MS has the potential to reduce the effort for purity determination

- Fast sensitive multi-element analysis without extensive sample preparation
- The use of the concept Relative Sensitivity Factors (RSFs) provides good **approximations** specially for high purity materials
- Only works with a wide uncertainty of the results

Synthetic Standards:

Different Doping Approaches

26.09.2019 CANAS 2019

26.09.2019 CANAS 2019

Pressed powder pellets for GDMS

RSC Publishing

Advantages of calibration with pressed powder pellets

- > Available for any material what can be pressed into pellets
- Wide variety of analyte (trace) elements and their concentration range
- more accurate results and more direct traceability to SI
- smaller uncertainties
- down to ppb

Content of F and Cl in Cu- CRMs

Preparation of Sintered Powder Mixtures

Powder is mixed (5 min) Sintering Process (30 min)

CaF2

Sintering conditions Temperature: 600 °C Pressure: 150 kN Inert gas: Ar

Properties: \emptyset = 20 mm, h \approx 20 mm, grindable density > 95% - vacuum tight homogeneous in mm range

Additional gases

Helium additional to Argon (Ar needed for sputtering)

Intensity increased for:

F (f ~10) Cl (f ~ 5)

Careful: purity of the gases! Quenching effect of N and O

First measurements with Neon

Comparison with other procedures

Measurement graphit furnace HR-CD-MAS

Conclusion and Outlook

GDMS an alternative to classical F-determination

Quantification strategies with pressed powder pellets/sintered samples

Improvement/Optimization of GD using additional discharge gases

Comparison using other techniques

Further investigations necessary to validate the findings