

Glow Discharge Mass Spectrometry in Lithium Ion Batteries – The Jack of All Trades for Analyzing Solid Battery Materials?

<u>Marcel Diehl</u>, Malina Helling, Peer Bärmann, Karina Ambrock, Martin Winter, Sascha Nowak Glow Discharge Symposium 2019, Freiberg, Germany, September 26, 2019

Lifecycle of a Battery

Lithium Ion Battery – Basic Principles

- Standard Setup of LIB
- Materials:

Anode - Carbonaceous Materials (Graphite)
Cathode - Lithium Transition Metal Oxides (e.g. LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂, NCM622)
Electrolyte – Conducting Salt (Lithium

Hexafluorophosphate) in organic Carbonate Mixture

Aging Effects of LIBs

Vortmann-Westhoven, B. et al.; J. Power Sources 2017, 346, 63-70.

Motivation

- Elucidation of elemental distribution and (Li-)migration mechanisms
- Measurement of challenging sample matrices (especially Si/C anodes) and next generation materials

Lithium Migration Mechanisms Using Isotopic Labeling

30

30

Ageing Experiments

- Comparison of ⁶Li-abundances indicate differences on the surface (≈0-5 min)
- Closer consideration of ^{6/7}Li intensities independently
 - First indications of an increased
 ⁷Li uptake after longer cycling

MÜNSTER

November 28, 2019

Determination of the Lithium Distribution

- Agglomeration of ⁶Li on the first hundreds of nm after 1st formation step
- Effect is lowered after longer aging procedure
- Initial decomposition contact to the anod
- Trend is apparent the
- Almost instant mixing of the different isotopic species in all measured cell components
- Still, cycling experir numbers need to be
 - So far not pos
- Enriched NCM cathousured in first experiments

Only GD measurements show stronger differences of the isotopic fractions

Pristine

20 -

20

Pristine

10 Cycles

1st Formation

10 Cycles

1st Formation

Pre-Lithiation Analyses for Cand C/Si-Electrodes

Why Pre-Lithiation?

Comparison of Different Pre-Lithiation Techniques

Influence of Si Particle Size on Pre-Lithiation

a)

- All electrodes with same amount (20 wt.%) Si in active material
- All electrodes pre-lithiated for 10 min with direct contact method
- Pre-lithiation time has an impact on the homogeneity, depth-distribution and relative intensity of lithium

Conclusion

- ⁶Li-isotope labeled conducting salt showed accumulation of ⁶Li on the top surface of carbonaceous anode
 - insertion of electrolyte lithium into cathode host structure
- ⁶Li-isotope labeled conducting salt also confirmed exchange of lithium from the conducting salt with lithium in the cathode material
 - insights into formation of protective SEI layer
- Different influence factors for lithium homogeneity and accumulation of prelithiated carbonaceous and C/Si composite electrodes could be determined
- BUT, only elemental information can be gathered and no spatial information are accessible

September 05, 2018

14

Outlook: Li-Metal – Proof of Principle

15

- Major problems:
 - no possibility of inert sample transfer \rightarrow sputter-coating of Cu on surface (least reactivity and alloying)
 - Thermal stress, plasma ignition and sustaining stable conditions

Project "Go3" (03ETE002D)

Acknowledgements

- Prof. Dr. Martin Winter
- Dr. Sascha Nowak
- Dr. Marco Evertz
- Alexander Kenkel
- Analytic and aging group
- BMWi for funding the project Go3 (03ETE002D)

Federal Ministry for Economic Affairs and Energy

