



# Analyse von modifizierten Konversionsschichten auf galvanisch Zink mit Hilfe der optischen Glimmentladungsspektrometrie

### Dr. rer. nat. Gerd Teichert<sup>1)</sup>, Dr.-Ing. Bernd Halbedel<sup>2)</sup>, Dipl.-Ing. Marcus Wilke<sup>3)</sup>

<sup>1)</sup> MFPA Weimar
 <sup>2)</sup> Technische Universität Ilmenau
 <sup>3)</sup> Bundesamt für Strahlenschutz, Salzgitter





## **Gliederung:**

- 1. Motivation
- 1. Bildung von Chromatierungsschichten (Passivierung- bzw. Konversionsschichten)
- 2. Verbesserung Verschleiß- und Kratzfestigkeit von Dickschichtpassivierungen
- 3. Schicht- und Partikelcharakterisierung
- 4. Glimmentladungsspektroskopie
  - a) Besonderheiten bei Passivierungsschichten
  - b) Ergebnisse incl. anderer Untersuchungsmethoden
- 5. Neues Projekt zur Modifizierung der Passivierungsschichten
- 6. Zusammenfassung

Dank für die finanzielle Unterstützung durch: Bundesministerium für Wirtschaft und Energie, Thüringer Aufbaubank





## **Motivation**

- durch Korrosion jährlicher volkswirtschaftlicher Schaden von 3,5 4 % des Bruttonationaleinkommens
- erfordert konsequente und beanspruchungsgerechte Anwendung von Korrosionsschutzmaßnahmen
- entscheidende Rolle spielt die moderne Oberflächentechnik
- mit ca. 30 % nimmt die Galvanotechnik das größte Segment in der Oberflächentechnik ein
- große Einschnitte durch Verbot des Einsatzes Cr(VI)-haltiger Gelb-, Schwarz und Olivchromatierungen für Zink- und Zinklegierungsschichten excellenter Korrosionsschutz, Selbstheilungseffekt
- Ersatz primär durch Cr(III)-haltige Dickschichtpassivierungen mit Dicken von 200 nm bis 500 nm
- wegen schlechterer Korrosionsschutzeigenschaften zusätzlich organische bzw. silicatische Versiegelungen







# Bildung der Chromatierungsschichten/Konversionsschichten Passivierung für Cr(VI)-freie Schichten

$$Zn + 2 H^{+} \longrightarrow Zn^{2+} + H_{2}$$
(1)

Anstieg pH-Wert an Oberfläche durch Protonenverbrauch

 $2 \operatorname{Cr}^{6+} + \operatorname{Zn} + \operatorname{H}_2 \longrightarrow 2 \operatorname{Cr}^{3+} + \operatorname{Zn}^{2+} + 2 \operatorname{H}^+$  (2)

Entfällt für Cr(III)-Passivierungen; Cr(III) reagiert auf Grund des pH-Anstiegs sofort bevor es einen stabilen Komplex bilden kann zu einer unlöslichen Zn/Cr-Oxidschicht

$$Zn^{2+} + x Cr^{3+} + y H_2O \iff ZnCr_xO_y + 2y H^+$$
 (3)

In diese Schichten wird auch Cr<sup>6+</sup> eingebaut, Voraussetzung für Selbstheilung





## Verbesserung der Verschleiß- und Kratzfestigkeit von Dickschichtpassivierungen

Einbau von oxidischen oder carbidischen Hartstoffpartikeln in die Cr(III)-freie Konversionsschichten → Ziel Verbesserung der Korrosionsbeständigkeit durch Verbesserung der Verschleiß und Kratzfestigkeit (Trommelware); überwiegend oxidische Partikel im Einsatz



Dickschichtpassivierung

Partikelquelle: adsorbierte Partikelschicht Duplexzinkschichten







# Schicht- und Partikelcharakterisierung

Eigenschaften der Dispersionssysteme schließen standardanalytische Verfahren aus:

- Partikelanalytik in Suspensionen hohe Elektrolytkonzentrationen
- geringe Schichtdicke Konversionsschicht (200 400 nm)
- hohe Oberflächenrauigkeit im Vergleich zur Schichtdicke
- geringer Härte Zink- (40 80 HV) und Konversionsschicht (HM<sub>Konverss..</sub> ≤ HM<sub>Zink</sub>) beeinflusst Härtemessungen

→ Auswahl und Anpassung von Analyseverfahren notwendig für korrekte Messergebnisse





## **Oberflächenadsorption und Referenzverfahren**

- Oberflächenadsorption bzw. oberflächennaher Einbau von Nanopartikeln und Agglomeraten häufiges Erscheinungsbild in Dispersionssystemen
  - → in vielen Literaturstellen werden mittels EDX- oder RFA-Messungen bestimmte Partikelgehalte angegeben, diese sind aber aufgrund der OF-Adsorption häufig verfälscht
- nur Tiefenprofilverfahren geeignet inhomogenen Partikeleinbau abzubilden, EDX und RFA führen aufgrund der Oberflächensensitivität und Annahme homogener Schichtzusammensetzungen zu Fehlbestimmung









## Einfluss RF-Generator und Probenkühlung auf Messergebnisse

- Freischwinger ermöglicht saubere Abbildung der dünnen Passivierungsschichten durch schnellere Stabilisierungszeiten (<<10ms) im Vergleich zu dem früheren Matchbox-System
- Probenkühlung verhindert thermische Schädigung der amorphen Passivschichten infolge Temperatureintrag während Messung / Sputterabtrag → reproduzierbare Ergebnisse



Matchbox – System

Freischwinger - System





## Weitere Kalibrierkurven







## Schichtdicke der Passivierungsschichten SLOTAPAS HK 30 (Fa. Schlötter)

| Tauchzeit | Bruchkante - REM | Ellipsometrie | GDOES <sub>korr.</sub> |
|-----------|------------------|---------------|------------------------|
| 75 s      | 254 nm           | 260 nm        | 250 nm                 |
| 120 s     | 326 nm           | 330 nm        | 320 nm                 |
| 300 s     | 578 nm           | 630 nm        | 610 nm                 |









# Lösungsansätze Partikeleinbau







## Partikelquelle Passivierungslösung

AERODOSP WK1330 – Partikel SiO<sub>2</sub>

AERODISP W440 – Partikel  $AI_2O_3$ 



- Ablagerung auf Passivierungsoberfläche
- < 4 m-% SiO<sub>2</sub>



- Partikel in Passivierungsschicht
- Konzentration < 2 m-%  $AI_2O_3$





# Lösungsansätze Partikeleinbau







## Zinkdispersionsschichten – Vergleich DC-Abscheidung und Puls Plating

- Elektrolytsuspension auf Basis SLOTANIT OT (Fa. Schlötter) mit 20 g/l Al<sub>2</sub>O<sub>3</sub> (pyrolytisch hergestellt bei Evonik, Partikelgröße 13 nm)
  - Elektrosterische Stabilisierung mit einem Polycarboxylatether (PCE)
  - Zusatz eines amphoteren Tensids
- DC- Abscheidung 1 4 A/dm<sup>2</sup>, gleichmäßiger Einbau von ca. 1 Masse-%  $Al_2O_3$
- Puls-Plating mit 100 ms/900 ms; 0,5 2 A/dm<sup>2</sup>, gleichmäßiger Einbau von ca.2,5 Masse-% Al<sub>2</sub>O<sub>3</sub>
- Passivierung mit SLOTAPAS HK10 (Fa. Schlötter), bis ca. 5 Masse-% Al<sub>2</sub>O<sub>3</sub>

#### **Dispersionsschicht Puls-Plating**



#### Passivierungsschicht







# Lösungsansätze Partikeleinbau







# Schematischer Verfahrensablauf Duplexzinkschichten







## **Partikelquelle – adsorbierte Partikel**

- Erste Zinkschicht ca. 15 μm
- Adsorption  $Al_2O_3$
- Zweite Zn-Schicht ca. 2 μm Einbau der Al<sub>2</sub>O<sub>3</sub>-Partikel<sub>1</sub> 1 2 m-%
- Passivierungsschicht mit Partikelgehalt 10 - 25 m-% Al<sub>2</sub>O<sub>3</sub>







# **Diskussion der Ergebnisse**

| Partikelherkunft | Passivierungslösung                                                                               | Zinkdispersionsschicht                                                                                                                                       | Duplex-Zinkschichten                                                                                          |
|------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Probleme         | Partikel vorrangig an der<br>Oberfläche,<br>ganz extrem bei SiO <sub>2</sub>                      | Stabilität der partikelhaltigen<br>Elektrolyte                                                                                                               | Haftfestigkeit der adsorbierten<br>Partikel                                                                   |
| Ergebnisse       | Geringe Einbauraten<br>< 2 m-% für Al <sub>2</sub> O <sub>3</sub><br>< 4 m-% für SiO <sub>2</sub> | 9 – 13 m-% Al <sub>2</sub> O <sub>3</sub><br>bisher nur im Labor,<br>im größeren Maßstab noch<br>keine stabile Elektrolyte für<br>die Dispersionsabscheidung | bis 20 m-% für $AI_2O_3$ im Labor<br>bis 6 m-% für $AI_2O_3$ im<br>Demonstrator<br>bis10 m-% für SiC im Labor |





# FIB-Schnitt durch System galv. Zn / Zn-Dispersionsschicht / Passivierung

homogener Partikeleinbau kann im FIB – Schnitt bestätigt werden

- kleine Agglomerate auf der Oberfläche
- eingebaute Agglomeratgröße entspricht Messungen in Ausgangsdispersion (d<sub>50</sub> = 60 nm)







## Instrumentierte Eindringprüfung - Martenshärte

- ermöglicht Härtebestimmung dünner Schichten durch Prüfkräfte bis in den pN Bereich
- Probleme Passivierungsschichten: geringe Härte Gesamtsystem (Passivierung + Zink)
   bebe Oberflöebenrewigkeit
  - hohe Oberflächenrauigkeit
  - → nur durch konsequente Optimierung Pr
    üfregime, Substratrauigkeit und Schichtdicken sind sinnvolle Messungen m
    öglich
- ESP Modus ermöglicht Aussagen zum Härteverlauf bzw. Inhomogenitäten im System







#### Martenshärtemessungen am System galv. Zn / Zn-Dispersionsschicht mit 20 g/l AluC / Passivierung

- Martenshärte Zinkschicht steigt infolge Partikeleinbau (GD-OES 0,6 m-% Al<sub>2</sub>O<sub>3</sub>)
  - $\rightarrow$  450 N/mm<sup>2</sup> (Martenshärte) ohne Partikel (~ 50 HV)
  - $\rightarrow$  700 N/mm<sup>2</sup> (Martenshärte) 20 g/l AluC (~80 HV)
- Partikelagglomerate an der Passivierungsoberfläche und teilweise eingebaute Agglomerate führen zu einer Erhöhung über den gesamten Schichtbereich
  - → bis 850 N/mm<sup>2</sup> (Martenshärte) in der Konversionsschicht (~ 120 HV)







# Neues Projekt – Modifizierung der tribologische Eigenschaften der Konversionsschicht

Einbau von Schichtsilicaten in die Passivierungsschicht (z. Z. Kaolinit)

- Nutzung der Spaltbarkeit der Schichtsilikate und des damit möglichen Gleitens der Schichtpakete → Tribologie, reibungsarme Schichten
- Nutzung der Barrierewirkung f
  ür Korrosionsschutz dazu hohes Aspektverh
  ältnis notwendig
- Erhöhung des Aspektverhältnisses durch
  - Delamination durch Nutzung Scherkräfte (Mahlprozess)
  - Delamination durch Interkalation oder Wärmebehandlung
  - Einfluss auf Stabilität Suspension
- Adsorption der Schichtsilicate auf der Zn-Schicht, Fixierung, Passivierung





## **Schichtsilicate**



#### Zweischichtsilicate - Kaolinit

Dreischichtsilicate – Talk, Montmorillonit





## **Delamination der Schichtsilicate**





Direkte und indirekte Interkalation (z. B. Kaliumacetat, HEMA) in Verbindung mit Polymerisaton

#### Kombination der Methoden





# Korrosionsschutz Barrierewirkung



Verlängerung Diffusionswege

- Aspektverhältnis
- Ausrichtung der Partikel (Textur)

Extreme Aspektverhältnis der delaminierten Schichtsilicate und zu erwartende Texturen bringen neue Herausforderungen an Schicht- und Partikelcharakterisierung

- GD-OES an diesen Passivierungsschichten (Einfluss Partikelmorphologie auf Sputterprozess usw.)
- Röntgendiffraktometrie (quantitative Phasenanalyse, Charakterisierung Interkalations- und Delaminierungszustand)
- Partikelgrößenbestimmung in den Suspensionen usw.





## Zusammenfassung

- Multimatrix-Kalibrationen erlauben Tiefenprofilierung komplexer Schichtsysteme incl. Dispersionsschichten mit unterschiedlichen Abtragsraten
  - > Oberflächenanalytische Verfahren (EDX, RFA) erlauben keine Aussagen zum Partikeleinbau
- Hohe Tiefenauflösung sowie Nachweisgrenzen f
  ür leichte Elemente wie N, C, O und H (nitridische, carbidische und oxidische Nanopartikel) auch bei technischen Substraten mit R<sub>a</sub> > 1 μm
- Gepulste HF-Analyse: 1. Verringerung der Abtragsrate für dünne Schichten
  - 2. Verbesserung der Tiefenauflösung
  - 3. Minimierung Wärmeeintrag in die Probe (zusätzliche Nutzung Probenkühlung)
- Vorteile für Charakterisierung Dispersionsschichten
  - Sichere Zuordnung zur Art des Partikeleinbaus
    - o Oberflächenadsorption
    - homogener Einbau
    - o Gradientenschichten
  - Hohe Nachweisgrenze bis 0,1 ppm (geringe Einbaurate)
  - Kurze Messzeiten, geringe Anforderungen an Probenvorbereitung, hoher Probendurchsatz





# Ich danke für ihre Aufmerksamkeit und wünsche allen eine gute Heimreise