

Thomas Asam
TAZ GmbH
TAZ Servicetechnik GmbH & CoKG

Normkonforme Validierung einer Methode für die Tiefenprofilanalyse (DIN EN ISO 17025, IATF 16949) inklusive korrekter Bestimmung von Messunsicherheiten am Beispiel nitrierter Proben

Inhalt

- Keine Normen
- Keine Unterscheidung TOP DOWN und BOTTOM Up
- Keine theoretische Erklärung TOP DOWN
- Möglichkeit zur Validierung der Konzentration und der Tiefe bei quantitativen GDOES Tiefenprofilanalysen nitrierter Proben
- Minimal erreichbare Messunsicherheit
- Zusammenfassung

Einleitung

- TAZ Servicetechnik GmbH & CoKG: Erstes Kalibrierlabor OES im akkreditierten Bereich nach DIN EN ISO 17025, Akkreditierung voraussichtlich 12/2019
- Seminare: Bestimmung von Messunsicherheiten der Funken- und Glimmentladungsspektrometrie in Theorie und Praxis
- Herstellung und Vertrieb zertifizierter Referenzproben

Unterscheidung der Validierung und der Messunsicherheit in 2 Bereiche:

- Chemische Zusammensetzung
- Schichtdicke

Unterscheidung der Validierung und der Messunsicherheit in 2 Bereiche:

- Chemische Zusammensetzung
 - Bestimmung Wiederholpräzision
 - Bestimmung Messunsicherheit

Unterscheidung der Validierung und der Messunsicherheit in 2 Bereiche:

- Chemische Zusammensetzung
 - Bestimmung Wiederholpräzision:

Mehrfachanalysen zertifiziert rückführbarer Proben inklusive Dokumentation Mittelwert, Standardabweichung, RSD und Messunsicherheit

- 1. Analyse einer unbekannten Probe
- 2. Auswahl von einer (oder mehreren)
 Referenzproben mit ähnlicher Zusammensetzung
 und derselben Matrix
- 3. Analyse der Kontrollprobe(n) unter gleichen Bedingungen (n ≥ 4)
- 4. Soll-Ist-Differenz der Referenzprobe

Voraussetzungen an die Proben:

- zertifizierte (rückführbare) Referenzproben
- "ähnlicher" Analyt-Gehalt von Kontrollprobe und unbekannter Probe

Errechnung von 4 Unsicherheitsbeiträgen:

- 1. Fehler aus Analyse der unbekannten Probe (Stabw.)
- 2. Fehler aus dem Zertifikat der Referenzprobe
- 3. Fehler aus Analyse der Referenzprobe (Stabw.)
- 4. Soll-Ist-Differenz der Referenzprobe

$$U_E = k \cdot \sqrt{\Delta_{Soll-Ist}^2 + u_Z^2 + u_M^2 + u_P^2}$$

k = 1, **2**, 3 für 68 %, **95**%, 99 ,6 % Vertrauensniveau

1. Unsicherheitsbeitrag: Fehler aus Analyse der unbekannten Probe

Messung der unbekannten Probe:

Methode:	Al-01-UG	
	Si	Fe
	%	%
1	10.07	0.589
2	10.06	0.594
3	10.03	0.593
4	10.05	0.595
5	10.07	0.594
< x > (5)	10.05	0.593
sd	0.017	0.0025
rsd	0.2	0.4

- → Mittelwert aus n_p Mehrfachmessungen: M_p
- → Berechnung der Standardabweichung S_P
- ightarrow 1. Unsicherheitsbeitrag: $u_P = \frac{S_P}{\sqrt{n_P}}$

2. Unsicherheitsbeitrag: Fehler aus dem Zertifikate

Unsicherheit aus dem Zertifikat der Kontrollprobe:

ECISS EUROPÄISCHES KOMITEE FÜR EISEN- UND STAHLNORMUNG COMITE EUROPEEN DE NORMALISATION DU FER ET DE L'ACIER UROPEAN COMMITTEE FOR IRON AND STEEL STANDARDIZATION

Zertifiziertes europäisches Referenzmaterial (EURONORM-ZRN Zertifikat über die chemische Analyse

EURONORM-ZRM Nr. 294-1 (Manganstahl 1.3816)

Laboratoriumsmittelwerte (4 Bestimmungen), Massenanteil in %

Lfd. Nr.	С	Si	Mn	P	S	Cr	Mo	Ni	As	Co	Cu	N	V
1	0.0633	0.2642	18,5765	0,0233	0,00011	17,8350	0,0802	0,4121	0,00278	0,0262	0,0223	0,5378	0,063
2	0,0637	0,2728	18,6141	0,0239	0,00015	17,8873	0,0823	0,4185	0,00303	0,0268	0,0225	0,5411	0,065
3	0,0638	0,2758	18,6145	0,0252	0,00015	17,9151	0,0826	0,4189	0,00318	0,0270	0,0227	0,5455	0,066
4	0,0644	0,2781	18,6233	0,0255	0,00023	17,9210	0,0832	0,4208	0,00340	0,0270	0,0230	0,5512	0,067
5	0,0647	0,2785	18,6250	0,0269	0,00028	17,9275	0,0836	0,4252	0,00363	0,0285	0,0231	0,5536	0,067
6	0,0652	0,2802	18,6275	0,0272	0,00029	17,9466	0,0837	0,4264	0,00363	0,0285	0,0234	0,5570	0,067
7	0,0655	0,2818	18,6335	0,0277	0,00030	17,9500	0,0850	0,4278	0,00365	0,0288	0,0235	0,5644	0,067
8	0.0660	0,2846	18,6456	0,0279	0,00035	17,9692	0,0856	0,4283	0,00365	0,0288	0,0244	0,5672	0,068
9	0,0664	0,2849	18,6550	0,0283	0,00035	17,9729	0,0863	0,4285	0,00373	0,0290	0,0244	0,5690	0,068
10	0,0667	0,2853	18,6953	0,0283	0,00048	17,9771	0,0865	0,4288	0,00374	0,0291	0,0250	0,5720	0,068
11	0.0667	0,2890	18,6987	0,0284	0,00048	17,9778		0,4349	0,00388	0,0293	0,0251	0,5835	0,069
12	0,0667	0,2899	18,7050	0,0285	0,00053	18,0351	0,0868	0,4376	0,00395	0,0300	0,0254	0,5895	0,073
13	0,0685	0,2912	18,7343	0,0286		18,0403	0,0889	0,4386	0,00433	0,0306	0,0254	0,5905	0,074
14	0.0686	0,2912	18,7673	0,0290		18,1090	0,0907	0,4388	0,00458	0,0307	0,0262	0,5955	0,074
15		0.2931	18,7685			18,1973	0,0917	0,4424		0,0317	0,0263		0,077
16			18,8308				0,0944					1	
17			_										
M(M)	0,0657	0,2827	18,6759	0,0271	0,00031	17,9774	0,0861		0,00365	0,0288	0,0242	0,5655	0,069
s(M)	0,0017	0,0080	0,0704	0,0019	0,00014	0,0897	0,0039	0,0087	0,00048	0,0016	0,0014	0,0189	0,000
s(w)	0,0004	0,0034	0,0645	0,0003	0,00006	0,0427	0,0007	0,0041	0,00015	0,0004	0,0004	0,0033	0,000

Lfd. Nr.	Al	В	Nb	Pb	Sn	Ti	W	Zr	Bi	Ca	Sb	Te
1	0,0051	0,00006	0,00015	0,000088	0,00097	0,00010	0,00065	0,00001	< 0,000005	0,00002		< 0,000006
2	0,0068	0,00007	0,00020	0,000125	0,00105	0,00033	0,00085	0,00010	< 0,000005	0,00004		< 0,00005
3	0,0070	0,00007	0,00025	0,000148	0,00110	0,00055	0,00098	0,00010	< 0,00001	0,00005	0,000550	0,000078
4	0,0076	0,00009		0,000151				< 0,0001	< 0,00005		0,000550	
5	0,0080	0,00010	0,00100	< 0,0002	0,00163			0,00012			0,000557	
6	0,0082	0,00010	< 0,001	< 0,001		0,00064		< 0,0005			0,000625	
7	0,0092	0,00016	< 0,001		0,00168	0,00070	0,00109	< 0,0010		0,00048	< 0,0007	
8	0,0097	0,00020			0,00190	< 0,001	0,00110	< 0,0010		0,00050		
9	0,0099	< 0,0002	0,00130			0,00145				0,00053		
10	0,0101	< 0,0005	0,00264			0,00145	0,00245					
11	0,0102		0,00345			0,00153	< 0,004					
12	0,0104											
13	0,0111											
14	0,0145					l						
15	0,0150											

M(M): Mittelwert der Laboratoriumsmittelwerte s(M): Standardatweichung der Laboratoriumsmittelwerte s(b): Standardatweichung zwischen den Laboratorien s(w): Standardatweichung winerhalb der Laboratorien

 $b) = \sqrt{s(M)^2 - \frac{s(w)^2}{4}}$

Die durch "------" gekennzeichneten Plätze vertreten Laboratoriumsmittelwerte, die mit einem statistischen Test nach Cochran Grubbe als Ausreißer erkannt und entfernt worden sind. Werte in Kursiv sind ausschließlich zur Information.

				ZE	RTIFIZIE	RTE W	ERTE (Massen	anteil in 6	%)			
	С	Si	Mn	P	S	Cr	Mo	Ni	As	Co	Cu	N	V
M(M)	0.0657	0.283	18,68	0,0271	0,00031	17,98	0,0861	0,429	0,0037	0,0288	0,0242	0,566	0,0694
C(95%)	0.0010	0.005	0.04	0.0011	0.00009	0.05	0,0022	0,005	0,0003	0,0009	0,0007	0,011	0,0021

C(95%) ist die halbe Breite des Vertrauensbereiches auf dem Vertrauensniveau 95%, t ist der entspreche Student-Faktor (t-Verteilung) und n die Anzahl der Laboratoriumsmittelwerte. Weitere Informationen siehe Cuido 35 (1980 excello 4)

 $(9376) = \frac{1}{\sqrt{n}}$

Düsseldorf, April 2005

- → Zertifizierter Mittelwert: M_Z
- → Unsicherheit auf Vertrauensniveau 68 %: u_z
- \rightarrow 2. Unsicherheitsbeitrag: $u_Z = u_{Zertifikat}$ (68%)

Zertifikat z.B. EZRM D 294-1 (ECISS)

M(M): Mittelwert der Laboratoriumsmittelwerte

Standardabweichung der Laboratoriumsmittelwerte s(M): Standardabweichung zwischen den Laboratorien s(b) : s(w) :

Standardabweichung innerhalb der Laboratorien

$s(b) = \sqrt{s(M)^2 - \frac{s(w)^2}{4}}$

ZERTIFIZIERTE WERTE (Massenanteil in %)

	С	Si	Mn	Р	S	Cr	Мо	Ni	As	Co	Cu	N	V
M(M)	0,0657	0,283	18,68	0,0271	0,00031	17,98	0,0861	0,429	0,0037	0,0288	0,0242	0,566	0,0694
C(95%)	0,0010	0,005	0,04	0,0011	0,00009	0,05	0,0022	0,005	0,0003	0,0009	0,0007	0,011	0,0021

C(95%) ist die halbe Breite des Vertrauensbereiches auf dem Vertrauensniveau 95%, t ist der entsprechende Student-Faktor (t-Verteilung) und n die Anzahl der Laboratoriumsmittelwerte. Weitere Informationen siehe ISO Guide 35:1989 section 4.

$$C(95\%) = \frac{t \cdot s(M)}{\sqrt{n}}$$

3. Unsicherheitsbeitrag: Fehler aus dem Unsicherheitsbeitrag der Referenzprobe

Referenzprobe	EZRM D 294-1
	С
Einzelmessungen n	10
Mittelwert	0,068
SD	0,004
RSD	5,9

4. Unsicherheitsbeitrag: Soll-Ist-Differenz der Kontrollprobe:

$$\Delta_{Soll-Ist} = |M_Z - M_M|$$
 Soll-Wert aus Zertifikat Mittelwert aus Messung der Kontrollprobe

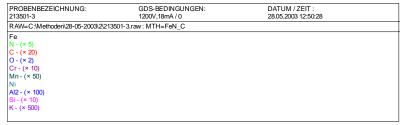
Kontrollprobe	EZRM D 294-1
	С
Anzahl Einzelmessungen n	10
Mittelwert	0,068
SD	0,004
RSD	5,9
Zertifizierter Wert	0,0657

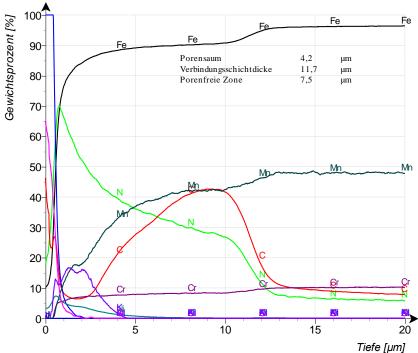
$$\rightarrow$$
 4. Unsicherheitsbeitrag: $\Delta_{Soll-Ist}^2 = (M_Z - M_M)^2$

Deckt die systematischen Abweichungen ab

kombinierte und erweiterte Messunsicherheit

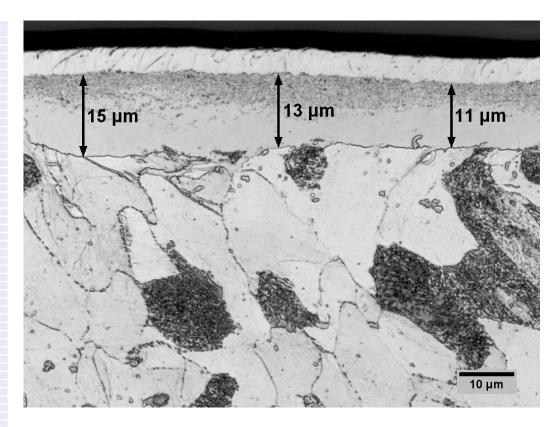
Erweiterte Messunsicherheit:


$$U_E = k \cdot \sqrt{\Delta_{Soll-Ist}^2 + u_Z^2 + u_M^2 + u_P^2}$$


k = 1, 2, 3 für 68%, 95%, 99% Vertrauensniveau

- 1. Tiefenprofilanalysen 75 nitrocarburierter Proben
- 2. Bestimmung Porensaum und Verbindungsschichtdicke mittels GDOES

Prod.Nr.	VS metallografisch	VS GDOS	Pfz metallografisch	Pfz GDOS
	[µm]	[µm]	[µm]	[µm]
213501-2	13,1	11,9	6,5	7,1
213501-3	12,7	11,7	6,4	7,5
213504-3	14,0	14,8	7,6	7,3
214275-2	10,0	10,4	4,5	4,9
214275-3	10,6	10,7	4,9	5,7
217272-2	12,5	12,1	7,5	6,9
217272-3	10,5	10,7	6,2	6,2
218779-2	14,5	13,7	7,4	6,6
218779-3	11,3	12,9	6,5	5,8
218829-3	13,6	13,3	8,1	5,9
218829-3*	13,4	13,3	7,5	5,9
220458-2	14,4	14,6	7,7	7,8
220458-3	11,9	12,2	6,4	5,4
227962-2	15,3	15,7	8,0	7,8
227962-2*	16,0	15,7	8,1	7,8
227962-3	12,9	12,4	7,0	5,1
234952-3	15,6	15,1	8,0	6,7
237733-2	16,1	16,7	9,3	9,1
237733-ref	18,3	18,1	11,2	10,5
240684-2	16,0	16,8	8,5	8,7
244205-2	18,7	17,8	7,7	6,4
244205-3	17,9	17,5	7,1	5,4
240684-2	16,0	16,8	8,5	8,7
240684-3	18,7	18,6	9,2	10,0
244205-3	17,7	17,5	7,1	5,4
244206-2	18,9	19,0	7,4	6,8
244206-3	18,9	19,9	6,6	7,0
246731-2	18,2	16,9	7,8	7,6
246731-3	14,8	14,2	6,9	6,9
246739-2	18.3	17.2	7,2	6.2
248829-3	14,2	14,0	7,3	6,2
257502-2	16,8	17,9	6,8	8,1
257502-3	15,4	16,9	7,0	7,6
257503-2	15.0	15,7	6,5	5.6
261297-2	15,9	15,9	7,2	5,4
277726-2	17,2	17,3	8,6	10,5
277726-3	18,4	20,9	9.3	11,8
282261-2	15.6	17,2	8.2	9,5
295273-2	17,2	17,1	8,6	7,8
298306-2	15,5	16,0	8,0	7,3
298306-2	17,2	16,8	9,2	8,3
299052-3				8,0
	16,2	15,3	8,0	
300858-2	13,6	14,1	8,4	7,5
300858-3	14,5	14,7	7,1	6,7
300859-3	15,4	13,7	8,1	7,2
300861-2	15,6	16,1	7,6	6,5
300861-3	15,8	16,4	7,6	8,3
300872-2	16,7	16,4	8,7	7,4
300872-3	14,4	14,4	7,4	8,3
301754-2	17,1	16,2	9,2	8,8
301754-3	15,4	15,6	7,9	8,3
301756-2	16,9	17,3	8,2	10,6
301761-2	16,0	15,5	8,4	8,1
301761-3	15,3	15,4	8,3	8,2



- 1. Tiefenprofilanalysen 75 nitrocarburierter Proben
- 2. Bestimmung Porensaum und Verbindungsschichtdicke mittels GDOES

Prod.Nr.	VS metallografisch	VS GDOS	Pfz metallografisch	Pfz GDOS
	[µm]	[µm]	[µm]	[μm]
213501-2	13,1	11,9	6,5	7,1
213501-3	12,7	11,7	6,4	7,5
213504-3	14,0	14,8	7,6	7,3
214275-2	10,0	10,4	4,5	4,9
214275-3	10,6	10,7	4,9	5,7
217272-2	12,5	12,1	7,5	6,9
217272-3	10,5	10,7	6,2	6,2
218779-2	14,5	13,7	7,4	6,6
218779-3	11,3	12,9	6,5	5,8
218829-3	13,6	13,3	8,1	5,9
218829-3*	13,4	13,3	7,5	5,9
220458-2	14,4	14,6	7,7	7,8
220458-3	11,9	12,2	6,4	5,4
227962-2	15,3	15,7	8,0	7,8
227962-2*	16,0	15,7	8,1	7,8
227962-3	12,9	12,4	7,0	5,1
234952-3	15,6	15,1	8,0	6,7
237733-2	16,1	16,7	9,3	9,1
237733-ref	18,3	18,1	11,2	10,5
240684-2	16,0	16,8	8,5	8,7
244205-2	18,7	17,8	7,7	6,4
244205-3	17,9	17,5	7,1	5,4
240684-2	16,0	16,8	8,5	8,7
240684-3	18.7	18,6	9,2	10.0
244205-3	17,7	17,5	7,1	5,4
244206-2	18,9	19,0	7,4	6,8
244206-3	18,9	19,9	6,6	7,0
246731-2	18,2	16,9	7,8	7,6
246731-3	14,8	14,2	6,9	6,9
246739-2	18.3	17,2	7.2	6,2
248829-3	14,2	14,0	7,3	6,2
257502-2	16.8	17,9	6,8	8.1
257502-3	15,4	16,9	7,0	7,6
257503-2	15,0	15,7	6,5	5,6
261297-2	15,9	15,9	7,2	5,4
277726-2	17,2	17,3	8,6	10,5
277726-3	18.4	20,9	9.3	11.8
282261-2	15,6	17,2	8,2	9,5
295273-2	17,2	17,1	8,6	7,8
298306-2	15.5	16,0	8,0	7,3
298306-3	17,2	16,8	9,2	8,3
299052-3	16,2	15,3	8,0	8,0
300858-2	13.6	14,1	8.4	7,5
300858-3	14,5	14,7	0,4 7,1	6,7
300859-3	15,4	13,7	8,1	7,2
300861-2	15,6	16,1	7,6	6,5
300861-3	15,8	16,4	7,6	8,3
300872-2	16,7	16,4	8,7	7,4
300872-3	14,4	14,4	7,4	8,3
301754-2	17,1	16,2	9,2	8,8
301754-3	15,4	15,6	7,9	8,3
301756-2	16,9	17,3	8,2	10,6
301761-2	16,0	15,5	8,4	8,1
301761-3	15,3	15,4	8,3	8,2

- 1. Tiefenprofilanalysen 75 nitrocarburierter Proben
- 2. Bestimmung von Porensaum und Verbindungsschichtdicke

Prod.Nr.	VS	VS GDOS	Pfz	Pfz GDOS
	metallografisch	[µm]	metallografisch	[µm]
	[µm]		[µm]	
213501-2	13,1	12,9	6,5	7,1
213501-3	12,7	11,7	6,4	7,5
213504-3	14,0	14,8	7,6	7,3
214275-2	10,0	10,4	4,5	4,9
214275-3	10,6	10,7	4,9	5,7

- 1. Tiefenprofilanalysen 75 nitrocarburierter Proben
- 2. Bestimmung Porensaum und Verbindungsschichtdicke mittels GDOES
- 3. Metallographischer Schliff durch Sputterkrater und Bestimmung von Porensaum und Verbindungsschichtdicke: Abweichung Soll-Istwert
 - Fehler 1: Abweichung Soll-Istwert
 - Fehler 2: Wiederholpräzision metallographische Bestimmung von Porensaum und Verbindungsschichtdicke (Stabw.)
 - Fehler 3: Wiederholpräzision Ablesen eines zertifizierten Glasmasstabes (Stabw.)
 - Fehler 4: Unsicherheit des Glassmasstabes
- 4. Erweiterung auf 95 % mit k=2

$$U_{E\,SD} = k \cdot \sqrt{\Delta_{Soll-Ist}^2 + u_{met}^2 + u_{Massstab}^2 + u_{Mass-Zert}^2}$$

Minimal erreichbare Messunsicherheit

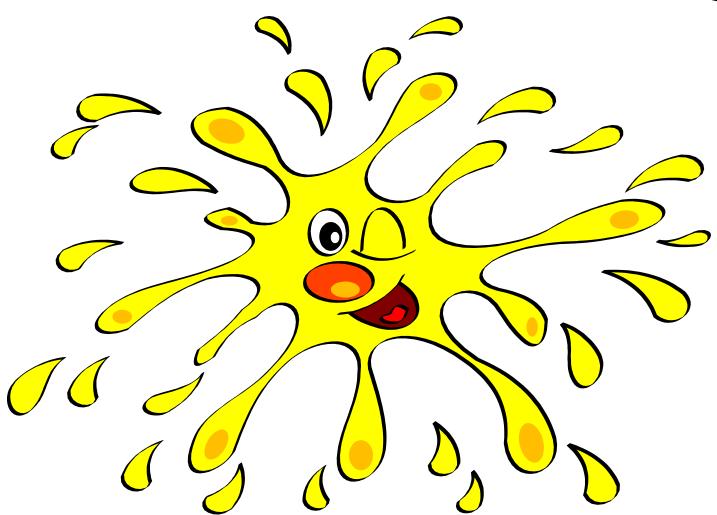
Theoretische Überlegungen und praktische Umsetzung

Element	С	Si	Mn	Р	s	Cr	Мо	Ni	Al	As
ZRM	EZRM D 191-2	SRM 1767	SRM 1768	SRM 1767	EZRM D 191-2	EZRM D 191-2	EZRM D 191-2	EZRM D 191-2	SRM 1768	SRM 1767
Theor. kl. angebbare	0,00022	0,0061	0,0011	0,00041	0,00021	0,00088	0,00041	0,00061	0,00061	0,00041
1,5·U _{ZRM} (95%)	0,0003	0,009	0,0015	0,0006	0,0003	0,0009	0,0006	0,0006	0,0009	0,0006
MU OES hochauflösend	0,00029	0,0064	0,0012	0,00091	0,00051	0,00136	0,00058	0,00070	0,00110	0,00285

Zusammenfassung

- Kurze Einführung in die Möglichkeiten der Validierung und Messunsicherheiten
- Top Down: Schnelle und einfache Bestimmung von Messunsicherheiten möglich (Bulk, Schichtdicke)

Gerne helfe ich Ihnen bei der Bestimmung der Messunsicherheiten, Validierung und bei Kalibrierscheinen Ihrer Funkenspektrometer weiter!!!


Thomas Asam, TAZ GmbH

Tel.: 0 82 08 / 95 81 56

Internet: www.tazgmbh.de

e-Mail: Info@tazgmbh.de

Vielen Dank für Ihre Aufmerksamkeit!!!

