APPLICATION OF PULSED GLOW DISCHARGE TIME-OF-FLIGHT MASS SPECTROMETRY FOR ELEMENTAL ANALYSIS OF OPTICAL MATERIALS

#glow discharge		#mass spectrometry		
#fluorine	Hdirod		#optical materials	
	#direct	. analysis	#hollow cathode	
#elemental analy	ysis #	depth profiling	#KTP	

<u>A. Gubal¹, V. Chuchina¹, A. Ganeev¹, V. Yakobson²</u> 523

¹Saint Petersburg State University , ²JSC "Research and Production Corporation S.I. Vavilova"

a.r.gubal@spbu.ru; a.r.gubal@mail.ru \square

Highlights

- A procedure of direct elemental analysis of the main components and dopants in optical materials based on pulsed GD TOF MS was developed.
- A new approach to the determination of high-ionization energy elements (O, F), which pose the greatest difficulties in the analysis of solid materials due to its high reactivity, volatility and high ionization energy, is proposed
- The possibility to control the stoichiometric composition and distribution of doping elements over the crystal volume (including depth profiling) is shown
- Pulsed GD MS allows for rapid and effective quality control of nonlinear optical crystals and to establish correlations between their growth conditions, composition and structure, and electrical and optical properties.

High ionization energy elements

 $(\tau_i = 1-20 \ \mu s)$

F, O in KTP crystals

Optimized parameters of O, F determination

Parameter	A	٨r	Ne
	F quant	O quant	F,O quant.
Auxilliary cathode	Та	Та	Та
Repelling pulse delay, μs	3	4	4
Pulse duration, µs	4	4	4
Discharge voltage, V	1300	1300	1800
Pressure, Pa	37	40	1150

Ionization processes and ion extraction in PGD. 1 –atom flux, 2 – ion flux; T – period of discharge pulses, τ_i – repelling pulse delay.

 $(\tau_i = 80-250 \ \mu s)$

Discharge frequency, kHz 3.2 3.2 3.2

Introduction

Second harmonic generators

Laser gain medium

Optical crystals

Crystal materials are widely used in laser optics. They are applied as second harmonic generation elements, electro-optical modulators or laser gain medium. Optical and nonlinear optical properties of these materials depend on their stoichiometric composition and distribution of main components and dopants in crystal volume. Therefore, a versatile analytical technique for the quality control of these material is essential.

Currently, glow discharge mass spectrometry is widely and successfully used for the direct elemental analysis of various conducting and dielectric solids. The work considers perspectives of pulsed glow discharge mass spectrometry for elemental analysis of optical materials.

Materials and Methods

Instrumentation

Operating parameters Parameter Value

Dependencies of intensities on repelling pulse delay (T_i)

LaF₃SrF₂:Gd crystals

Powdering and pressing on aluminum foil tablete helps avoiding the signal instability

Sample	SrF ₂ , mass %	SrF ₂ , mass %				
	Putative	SEM EDX	GDMS			
1	0.01	-	0.009±0.0002			
2	3.0	2.53±0.23	2.64±0.19			
3	10.0	6.04±0.25	6.33±0.23			
4	16.0	8.21±0.16	8.42±0.26			

Continuous sputtering of samples with high fluorine content and ionic conductivity

Mass spectra of KTP:KF ($C_F = 0.23$ mass %)

40	Ar	3+	_					40 -	21				-						101
								₩A	r∠+				D)				-	Sam
																		-	KTP
		_					26	. .		_			_	_					КТР
10						_	304	\r²⁺						_					КТР
120	;*													_					КТР
						_		-		1	9F+								КТР
											_							_	SGD
				40		38	Ar											_	a –
				1°C)* 1	°Oʻ	H⁺					L.		_				_	b –
31	1	3.10 6 0 †	0	1	5.01		17.0 <i>m/z</i>	5 1	9.22	2	21.5	3	23	.96					KTP
Ne ²⁺	•		20	Ne⁺		2	'Ne⁺ ²Ne⁺											-	Elen
le-													\square		48 T	+		-	
																			К

Fluorine concentration of KTP:KF crystal and reference material SGD-1A (GDMS, SEM EDX)

Sample	C _F , mass %	C _F , mass %	C _F , mass %
		GDMS	SEM EDX
KTP1	0.20 ^a	0.16±0.06	< 0.5
KTP2	0.22 ^a	0.23±0.07	< 0.5
КТРЗ	0.45 ^a	0.36±0.09	< 0.5
KTP4	0.45 ^a	0.39±0.11	< 0.5
KTP5	1.24 ^{<i>a</i>}	1.35±0.33	1.3±0.6
SGD-1A	0.12 ± 0.01^{b}	0.11±0.04	< 0.5
a – Putative	value calculated	from the crystallize	ation charge,

Certified value

elemental content (GDMS, GFA, SEM EDX)

Element Stoichiometric, mass% GDMS, mass% GFA, mass% SEM EDX, mass% K 20.10 19.3±1.3 N.a. 16.4±1.3 Ti 24.12 (24.12) ^a N.a. 18.6±0.9 P 15.58 16.5±1.7 N.a. 15.1±0.7 O 40.20 40.0±1.8 38.6±2.9 50.0±2.8 a – Ti was used for internal standardisation Image: Note that the standardisation Image: Note that the standardisation							
K20.1019.3 \pm 1.3N.a.16.4 \pm 1.3Ti24.12(24.12) ^a N.a.18.6 \pm 0.9P15.5816.5 \pm 1.7N.a.15.1 \pm 0.7O40.2040.0 \pm 1.838.6 \pm 2.950.0 \pm 2.8 $a - Ti$ was used for internal standardisation	Element	Stoichiometric, mass%	GDMS, mass%	GFA, mass%	SEM EDX, mass%		
Ti 24.12 (24.12) ^a N.a. 18.6±0.9 P 15.58 16.5±1.7 N.a. 15.1±0.7 O 40.20 40.0±1.8 38.6±2.9 50.0±2.8 a - Ti was used for internal standardisation	К	20.10	19.3±1.3	N.a.	16.4±1.3		
P 15.58 16.5±1.7 N.a. 15.1±0.7 O 40.20 40.0±1.8 38.6±2.9 50.0±2.8 a – Ti was used for internal standardisation	Ti	24.12	(24.12) ^a	N.a.	18.6±0.9		
O 40.20 40.0±1.8 38.6±2.9 50.0±2.8 a – Ti was used for internal standardisation	Р	15.58	16.5±1.7	N.a.	15.1±0.7		
a – Ti was used for internal standardisation	0	40.20	40.0±1.8	38.6±2.9	50.0 ±2.8		
	a – Ti was used for internal standardisation						

RSF and LoD values for Ar and Ne discharges

Elomont	Penning ionization	Electron io	onization
Liement	Ne	Ar	Ne
Ti	1.80±0.13	1.00	0.20±0.04
К	0.40±0.03	0.46±0.08	0.06±0.03
Р	0.45±0.04	0.13±0.04	0.017±0.002
0	0.010±0.001	0.0710±0.0009	0.30±0.07
F	0.0060±0.0004	0.22±0.05	1.9±0.3
Element	LoD-Ar, mass	s % LoE)-Ne, mass %
K	0.002		0.008
Р	0.001		0.01
0	0.001		0.0005
F	0.01		0.0002

Auxilliary cathode	Ta, Al
Sample aperture diameter	1.5 mm
Discharge pulse voltage, V	-900 to -1800
Discharge current	up to 3A
Pulse duration, μs	2-5
Discharge frequency, kHz	1-4
Pressure, Pa	35-1150
Repelling pulse delay, μs	1-300

Lumas-30 Pulsed GD TOFMS

Combined hollow cathode discharge cell

Samples

KTP single crystals (dielectric, used for second harmonic generation elements, electro-optical modulators): KTiOPO₄ KTiOPO₄:KF (0.2 – 1.24 mass % F) K_(1-x)Rb_xTiOPO4 (0.2 – 25 %)

LaF₃SrF₂:Gd crystals (dielectric, used as laser gain medium) $LaF_3SrF_2:Gd$ (0.01 – 16 mass % SrF_2 , 0.05 mass % GdF_3)

Stoichiometry study

Diffraction shadow images of samples indicating different faces

K and Rb content (at. %) in adjacent crystal growth faces

KRTP crystal (K:Rb 99.8:0.2 at.%).

Cructall	Growth	GD MS	SEM EDX	GD MS	SEM EDX
Crystall	Face	Rt	0		К
0.2% Rb 2.5. 1	(011)	$0.022{\pm}0.001$		11.20±0.11	11.26±0.20
0.2% Rb 2.5. 2	(201)	$0.052{\pm}0.003$		12.50±0.06	12.50±0.06
0.2% Rb 2.5. 3	(201)	0.067±0.004		13.12±0.07	13.04±0.12
0.2% Rb 2.5. 4	(011)	0.044 ± 0.005	-	12.14±0.06	12.17±0.17
0.2% Rb 011	(011)	0.066±0.004		11.93±0.04	11.81±0.14
0.2% Rb 201	(201)	0.020±0.002		11.59±0.07	11.54±0.18
5% Rb 5	(100)	0.35±0.02	0.36±0.04	11.43±0.03	11.39±0.24
5% Rb 4	(201)	0.28±0.01	0.34±0.04	11.24±0.06	11.21±0.07

Crystall	Salt solvent	C _{Rb/(Rb+K)}	C _{Rb} , at.%	R, 10 ¹¹ Ohm*cm (T=25°C
97-05	K ₃ PO ₄ :KPO ₃ =1.5:1	-	-	-
31-11-07	K ₄ P ₂ O ₇ =K ₃ PO ₄ :KPO ₃	-	-	-
31-34-14	К ₃ РО ₄ :КРО ₃ =1.5:1	0.2	0.03	0.6
31-36-14	K ₃ PO ₄ :KPO ₃ =1.5:1	1	0.13	0.8
9-06-17	K ₄ P ₂ O ₇ =K ₃ PO ₄ :KPO ₃	5	0.63	3.0
Н -01-19	K ₄ P ₂ O ₇ =K ₃ PO ₄ :KPO ₃	5	0.63	3.3
31-71-97	K ₄ P ₂ O ₇ =K ₃ PO ₄ :KPO ₃	10	1.25	7.8
31-72-97	K ₄ P ₂ O ₇ =K ₃ PO ₄ :KPO ₃	20	2.50	7.9
31-73-97	K ₄ P ₂ O ₇ =K ₃ PO ₄ :KPO ₃	25	3.00	7

Effect of growth speed

Crystal		5% H-01-19	5% 9-06-17
Growth mode		Fast (2.5 weeks)	Slow (5 weeks)
GD MS		0.45 ± 0.02	0.35±0.03
SEM EDX	C _{Rb} , at.%	$0.44{\pm}0.02$	0.34 ± 0.035
Putative		0.	.625
GD MS		12.08±0.07	11.27±0.06
SEM EDX	C_K , at.%	12.02±0.09	11.21±0.07
Putative		1	1.72

Effect of solvent. Pure KTP samples Salt solvent KTP crvstal Ο

Kiri erystar	Salt Solvent	0	I	IX
97-05	K ₃ PO ₄ :KPO ₃ =1.5:1	94.2±0.8	95.9±0.1	97.7±0.3
31-11-07	K ₄ P ₂ O ₇ =K ₃ PO ₄ :KPO ₃	88.3±2.3	95.6±0.15	97.4±0.5

components and dopants, coefficients of inclusion from crystallization charge

Properties Optical **Nonlinear optical** Electrochemical

Depth profiling

In-depth distribution of main components

and dopants

Growth

Temperature, Growth speed,

Dopant content

conditions

Solvent composition,

Coatings 350 nm Ni on silicon Multilayer mirror coating 100 nm SiO₂-(200 nm TiO₂-200 nm SiO₂)x15 on glass

Sample preparation:

Covering with silver suspension in 2-propanol, drying with a technical fan (150°C, 2 min)

For depth profiling vacuum deposition of silver layer (100-600 nm thickness) is used

References

Depth profiling of multilayer coating (mirror) 100 nm SiO_2 -(200 nm TiO_2 -200 nm SiO_2)x15 on glass

✓ Analysis of multilayer mirror/antireflection

coatings

Want to know more about us?

A. Ganeev et al. (2019) Neon plasma for effective ionisation of oxygen and fluorine in pulsed glow discharge – high ionisation energy elements quantification in potassium titanyl phosphate single crystals. J. Anal. At. Spectrom., 34, 588-597, doi:10.1039/C8JA00378E

Bodnar, V. et al. (2018) Pulsed glow discharge enables direct mass spectrometric measurement of fluorine in crystal materials – fluorine quantification and depth profiling in fluorine doped potassium titanyl phosphate. Spectrochim. Acta B, 145, 20-28. doi:10.1016/j.sab.2018.04.002

Gubal, A. et al. (2018) Direct determination of oxygen and other elements in non-conducting crystal materials by pulsed glow discharge time-of-flight mass spectrometry with potassium titanyl phosphate as an example. Vacuum, 153, 248-253. doi:10.1016/j.vacuum.2018.04.034

Ganeev, A. et al. (2011) Lumas-30 time-of-flight mass spectrometer with pulsed glow discharge for direct determination of nitrogen in steel. J. Anal. Chem., 66(14), 1411-1416. doi:10.1134/S1061934811140097

Acknowledgments

